STATE COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING

TNCF 2017 - DRAFT SYLLABUS

Subject : Chemistry

Class : XI

TOPIC	CONTENT
Unit 1 : Basic concepts of chemistry and chemical calculations	Importance of Chemistry; Classification of matters; Elements and compounds; Atomic and molecular masses; equivalent mass, empirical and molecular formula;mole concept; stoichiometric calculations; Limiting reagents, redox reactions, competitive electron transfer reactions, oxidation number; types of redox reactions and balancing redox reactions
Unit 2 : Quantum mechanical model of atom	Brief introduction to various atom models; Dual behaviour of matter;Debroglie relation, Heisenberg's uncertainty principle; Quantum mechanical model of atom;Schrödinger equation, Quantum numbers; Atomic orbitals – shapes, energy, Aufbauprinciple, Pauli exclusion principle, Hund's rule; Electronic configuration of atoms, stability of completely filled and half-filled orbitals
Unit 3: Elements and periodic classification	Need for classification of elements; Modern periodic law and periodic table; Nomenclature of elements with atomic numbers greater than 100; Classification of elements based on

	electronic configurations;Periodic trends in
	properties - atomic radius, ionic radius,
	ionisation enthalpy, electron affinity,
	electronegativity; Periodic trends in chemical
	properties, periodicity of valence/oxidation
	states, Anomalous properties of second
	period elements, Diagonal relationship
Unit 4:	Position of hydrogen in the periodic
Hydrogen and water	table, isotopes of hydrogen, or tho and para
	hydrogen; Preparation of hydrogen:laboratory
	and commercial production; Physical and
	chemical properties of hydrogen, uses of
	hydrogen; Hydrides:classification; Physical
	and chemicalproperties of water, heavy water;
	hardness of water and its removal; Hydrogen
	peroxide: Preparation, structure,
	physicalandchemical properties, uses.
Unit 5 :	Alkali metals: General characteristics,
Alkaline and alkaline earth	chemical properties and uses; general
metals	characteristics; physical, chemical properties
	and uses; compounds of alkali metals: oxides,
	hydroxides, halides, salts of oxoacids –
	general characteristics; Biological importance
	of sodium and potassium. Alkaline earth
	metals: general characteristics, physical,
	chemical properties and uses; compounds of
	alkaline earth metals: oxides, hydroxides,
	halides, salts of oxoacids – general
	characteristics; important compounds of

	calcium: quick lime, slake lime, gypsum and
	plaster of paris; Biological importance of
	magnesium and calcium.
Unit 6 :	Kossel – Lewis approach to chemical bonding;
Chemical Bonding	octet rule, ionic bond, covalent bond, co-
	ordinate bond; bonding in metals; Bond
	parameters; resonance; polarity of bonds;
	Hybridisation – Orbital overlap, σ and π
	bonds, VSEPR theory, shapes of covalent
	molecules; Valence bond theory (VBT),
	Molecular Orbital Theory: Bonding in homo-
	nuclear diatomic molecules (H ₂ , Li ₂ , B ₂ , C ₂ ,
	N ₂ and O ₂) and hetero-nuclear diatomic
	molecules (CO and NO); Hydrogen bond -
	criteria, types, and significance.
Unit 7 ·	Introduction to thermodynamic terms. System
Thermodynamics	and surroundings types and properties of
mermouynamics	sustem: processes : reversible irreversible
	adiabatia isothermal isobaria isocharia and
	autabatic, isothermal, isobaric, isochoric and
	First low of thermodynamics: Enthelpy:
	relationship between All and All: Thorma
	chemical equations: Enthelmy changes for
	different types of reactions and phase
	transformational Macaurant of All and All
	ualisioninations; measurement of ΔH and ΔU
	using calorimetry; ness law of constant heat
	summation; Lattice enthalpy: Born-Haber
	cycle; need for second law of

	thermodynamics; various statements of
	second law; Meaning and significance of
	entropy; Gibbs free energy and its
	significance; criteria for spontaneity of a
	process; Relationship between ΔG and
	equilibrium constant; Third law of
	thermodynamics (statement only)
Unit 8: Gaseous state	Introduction; Gas laws: Boyle's law, Charles law, Gay Lussac's law, Avogadro law; Ideal
	gas equation and deviation from ideal behaviour; Compressibility factor; Vander-
	waals equation; critical phenomena; Relation
	between Vander-waals constants and critical
	constants; diffusion - Grahams diffusion law;
	Liquefaction of gases – Joule Thomson effect;
	isotherms of carbon-dioxide.
Unit 9 :	Types of solutions; expressing Concentration
Solutions	of solutions – mass percentage, volume
	percentage, parts per million (ppm), mole
	fraction, molarity, molality and normality;
	Henrys law, Vapour pressure of liquid
	solutions; Raoult's law for volatile solutes and
	non-volatile solutes; ideal and non-ideal
	solutes; factors responsible for deviation from
	Raoults law.
	Colligative properties; Relative lowering of
	vapour pressure; depression of freezing point;
	Elevation of boiling point; Osmosis and

	osmotic pressure; Reverse osmosis and water
	purification; Abnormal molecular mass:
	Dissociation and association, Vant Hoff factor.
Unit 10 :	Introduction to physical and chemical
Chemical equilibrium	equilibria; Law of mass action; Equilibrium
	constants (K_p and K_c); Relation between K_p and
	K _c ; Homogeneous and Heterogeneous
	equilibrium; Applications of equilibrium
	constants in predicting the extend and the
	direction of a reaction; Lechatlier's principle -
	effect of concentration, pressure, temperature,
	catalyst and inert gas addition; Vant-Hoff
	equation
Unit 11 :	Introduction, Classification and nomenclature
Organic Chemistry – Basic	of organic compounds; IUPAC rules for
principles and technique	naming organic compounds; structural
	representation; Isomerism – structural
	isomerism, stereo isomerism: Geometrical and
	optical isomerism, Detection and estimation
	of elements (C, H, N, S, X and P) in organic
	compounds; Purification of organic
	compounds – sublimation, crystallisation,
	distillation (fraction, steam and azeotropic),
	differential extraction, chromatography
	(absorption, column, thin layer and partition
	chromatography)
Unit 12 :	Fundamental concepts in organic reaction
Organic reactions and their	mechanism; Fission of co-valent bond;

mechanism	Nucleophiles, electrophiles and free radicals;
	Electron displacements effects in covalent
	bonds – inductive effect, electrometric effect,
	resonance effect, hyper conjugation and
	mesomeric effect; Types of organic reactions:
	substitution reactions, addition reactions,
	elimination reactions, oxidation reactions,
	reduction reactions, molecular
	rearrangements; Functional group
	interconversions,
Unit 13 :	Introduction, classification of hydro carbons;
Hydrocarbons	Preparation and chemical properties of
	alkanes, alkenes and alkynes; Markovnikov
	and anti-markovnikov addition reactions and
	their mechanism; conformers of alkanes;
	Aromatic hydrocarbons: Aromaticity and
	Huckel Rule; Structure of benzene;
	Preparation of benzene; Aromatic electrophilic
	substitution reactions and mechanism,
	influence of functional group in mono
	substituted benzene; toxicity(carcinogenicity)
Unit 14 :	Halo-alkanes; nature of C–X bond,
Halo-alkanes and halo-	classification and nomenclature; preparation
arenes	from alkanes, alkenes and alcohols; physical
	properties; chemical properties – nucleophilic
	substitution reactions, stereo chemical
	aspects (S_N1 , S_N2); Elimination reactions, E1
	and E2 mechanisms; organometallic
	compounds: Introduction, preparation and

	uses of Grignard reagent; Haloarenes:
	Preparation of chlorobenzene; Chemical
	properties of chlorobenzene: nucleophilic and
	electrophilic substitution reactions, reaction
	with metals (Wurtz-Fittig and Fittig reactions),
	Formation of DDT; polyhalogen compounds
	and uses.
Unit 15 :	Environmental pollution; Types – air, water
Environmental chemistry	and soil pollution; Particulate pollutants,
	Greenhouse effect and global warming; Acid
	rain and its effect; Ozone hole; Strategies to
	control environmental pollutions; Green
	chemistry

STATE COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING

TNCF 2017 - DRAFT SYLLABUS

Subject :Chemistry

Class : XII

ΤΟΡΙϹ	CONTENT
Unit 1 : Metallurgy	Occurrence of metals; Concentration of ores; Extraction of crude metal; Thermodynamic principle of metallurgy; Electrochemical principle of metallurgy and applications: Electrolytic extraction of Aluminium, electrochemical series; extraction based on oxidation and reduction; application of metals (Al, Zn, Fe, Cu, Au)
Unit 2 : p-Block elements – I	Occurrence, electronic configurations, oxidation states, general trends in physical and chemical properties of the elements in the period and group; Anomalous properties of the first element of each group; Boron and Aluminium: occurrence, preparation, physical and chemical properties and uses; structure, properties and uses of borax, boric acid, boron trifluoride; Reactions with acids and alkalies; Structure, properties and uses of aluminium chloride and alums; Carbon and Silicon: Anomalous behaviour of eachery. Tendency, for extension

	Structure, properties and uses of allotropes of carbon; Structure, properties and uses of oxides of carbon; Structure, properties and uses of silicon tetrachloride, silicones, silicate and zeolites; Nitrogen and Phosphorus: Occurrence, Properties and uses of Nitrogen; Preparation, properties, structure and uses of ammonia and nitric acid; Structure of oxides and oxoacids of nitrogen; Allotrophic forms of phosphorus; Properties and uses of phosphorus; Preparation, properties, structure and uses of phosphine and phosphorus halides(PCI ₃ , PCI ₅); Structure of oxides and oxoacids of phosphorus.
Unit 3 : P block elements – II	Oxygen and Sulphur :preparation, properties, structure and uses of oxygen and ozone, Allotropic forms of sulphur, preparation, properties, structure and uses of sulphur dioxide and sulphuric acid. halogens :Occurrence, preparation, properties and uses of chlorine and hydrochloric acid; Trends in the physical and chemical properties of hydrogen halides; Structures of inter-halogen compounds, oxides and oxoacids of halogens; Noble gases: Occurrence, trends in physical & chemical properties and uses.
Unit 4: Transition and inner transition metals	Position in the periodic table; Electronic configuration; General trend in properties of 3d series elements; Characteristics of transition metals; Oxides and oxo anions of transition metals; Potassium dichromate& potassium permanganate:

	structure, shape, oxidizing nature in acidic, basic and neutral medium, use in redoxtitration, structure of chromate, dichromate, manganite and permanganate ion; f-block elements: position of f-block elements in periodic table, electronic configuration, atomic and ionic radii, oxidation states: Lanthanide contraction and its consequences; Actinides: oxidation states and comparison with lanthanides
Unit 5 : Co-ordination Compounds	Definition of co-ordination compounds: coordination entity, Central metal atom/ion, Ligands, Coordination number, Coordination sphere, Coordination polyhedron, Oxidation number of central atom, Homoleptic and heteroleptic complexes; Differences with double salt; IUPAC Nomenclature of coordination compounds; Isomerism in co-ordination compounds: structural and stereoisomerism; Theories of co-ordination compounds: Werner's theory, Valence Bond Theory, Crystal field theory; Stability and applications of co-ordination compounds.
Unit 6 : Solid State	Introduction to solid state; Amorphous and crystalline solids; classification of crystalline solids; Unit Cell: Types of unit cell in two dimensions and three dimensions; Calculation of no of atoms per unit cell in a cubic unit cell; Packing and packing efficiency in solids; Packing fraction in sc, fcc and bcc; Voids: types, location and formation; Calculations involving unit cell dimensions; Imperfection in solids – types of point defects; Electrical and magnetic properties

Unit 7: Chemical Kinetics	Introduction of Kinetics; Rate of a reaction; order of a reaction; molecularity of a reaction; factors affecting reaction rate; Integrated rate equations (zero and first order reactions only); half-life of a reactions; pseudo first order reaction; concept of collision theory; Temperature dependence of reaction rate – activation energy and Arrhenius equation.
Unit 8 : Ionic Equilibrium	Acids, bases and salts; Various concepts of acids and base; Arrhenius, Brönsted-Lowry and Lewis theory of acids and bases; Ionisation of water; The P ^H scale; Ionisation of week acids- Oswalt dilution law; Common ion effect; Buffer solution; Henderson- Hasselbalch equation; Salt hydrolysis; Solubility and Solubility product;
Unit 9 : Electrochemistry	Introduction; Conductivity of electrolytic solutions;Resistivity, conductivity, equivalent conductivity, molar conductivity; measurement of the conductivity of ionic solutions; Variation of conductivity with concentration; Debye HuckelOnsagar equation;Kohlrausch's law; Electrochemical Cells; IUPAC conventions for electro chemical cells Galvanic Cell; Measurement of Electrode Potential;Nernst Equation; Equilibrium constant from Nernst Equation; Electro-chemical cell and Gibbs Energy of Reaction; Electrolytic cells and electrolysis; Faradays law of electrolysis; Product of electrolysis; Batteries; Primary Batteries; Secondary Batteries; Fuel cells; Corrosion; Control of corrosion;
Unit 10 :	Introduction; absorption and adsorption;

Surface Chemistry	Types of adsorption; Applications of Adsorption;Adsorption isotherms; Catalysis; Characteristics of catalyst; Types of catalyst, theories of catalysis; Enzyme catalysis; Colloids. Classification, Preparation and Purification of colloids; Properties of colloidal solution; Emulsions; Application of colloids and emulsions in day today life;
Unit 11 : Alcohols, phenols and ethers	Alcohols; Introduction; classification; nomenclature; Monohydric alcohols- methods of preparation; Physical and chemical properties, mechanism of dehydration; (Saytzeff's rule), oxidation, acidity of alcohols; Methods of differentiation of primary, secondary and tertiary alcohols; Inter conversions of primary, secondary and tertiary alcohols; Commercially important alcohols; Manufacture of methanol, ethanoland its uses; Dihydric alcohols and Trihydric alcohols; Ethylene glycol – preparation; Physical and chemical properties and uses; Phenols- classification, nomenclature occurrence; Methods of preparation Physical and chemical properties; Distinction test between alcohols and phenols; Uses of phenols; Ether- classification, nomenclature; methods of preparation; physical and chemical properties and uses; Crown ethers.
Unit 12 : Aldehydes, Ketones and Carboxylic acids	Carbonyl compounds; Introduction; structure of carbonyl group; nomenclature; aliphatic aldehydes and ketones; Methods of preparation; physical and chemical properties; order of reactivity of aldehydes and ketones; Nucleophilic addition reaction and mechanism; uses of aliphatic

	aldehydes and ketones; Aromatic aldehydes; Methods of preparation and ; Chemical reactions; carboxylic acids; Introduction; Structure of carboxyl group; nomenclature; Aliphatic and aromatic carboxylic acids; Methods of preparation; Physical and Chemical properties; Acidity of carboxylic acids – effect of substituents (Concept of K _a and pK _a); Test for carboxylic acids; uses of carboxylic acids; Acid derivatives; Acid chlorides, esters, acid anhydrides and acid amides: Nomenclature, order of reactivity of acid derivatives; Preparation, properties and uses;
Unit 13 : Organic compounds containing Nitrogen	Nitrocompounds: Nomenclature, isomerism, preparation, chemical reactions and uses; Amines: classification, nomenclature, structure; methods of preparations, physical properties, chemical properties, Basic character of amines (K _b and pK _b); distinction between primary, secondary and tertiary amines; Diazonium salts: structure, preparation, physical and chemical properties ; Cyanides and Isocyanides: nomenclature, preparation, properties and uses
Unit 14 : Biomolecules	Carbohydrates: Monosaccharides; preparation and cyclic structures; disaccharides cyclic structure; polysaccharides; sources and cyclic structures; Importance of carbohydrates; Proteins: amino acids, classification, Zwitter ions, isoelectric point, peptide bond, classification proteins; structure of proteins: denaturation of proteins; Enzymes: mechanism of enzyme action; Lipids: classification and biological

	functions; Vitamins: definition,
	classification, sources and deficiency
	diseases; Nucleic acids: definition : DNA &
	RNA, Nucleoside and nucleotides, ATP and
	its importance.
	-
Unit 15 :	Introduction; Medicinal chemistry:
Chemistry in everyday life	classification of drugs, drug target
	interactions; different classes of drugs;
	Food chemistry: food additives, artificial
	sweeteners, food preservatives, anti-
	oxidants; Cleansing agents: Soaps and
	detergents - types, cleansing action,
	Polymer chemistry: classification based on
	source, structure, molecular forces; Types
	of polymerisation, addition polymerisation
	and mechanism; Preparation of addition
	polymers (polyethene, Teflon, poly
	acrylonitrile); Condensation polymers:
	preparation of polyamides (Nylon-6 &
	Nylon 6,6), polyesters (terelene), Bakelite,
	melamine, formaldehyde polymer; Co-
	polymerisation: Rubber: natural rubber,
	vulcanization of rubber; Biodegradable
	polymers: PHBV, Nylon-2, Nylon-6;
	Commercially important polymers