STATE COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING TNCF 2017 - DRAFT SYLLABUS

Subject :Mathematics

Class : XI

TOPIC	CONTENT
Unit 1 :	Real Numbers - Revision : Rational, Irrational Numbers,
Basic Algebra	Expressing inequalities like $x < 2$ or $x \ge 3$ using intervals; Absolute value of x; Exponents - Revision: Properties of exponents, Converting radicals/surds to exponents. Rationalizing fractions with surds; Polynomials - Addition, multiplication and factorisation of polynomials, Identities for $(x+a)(x+b)$, $(a\pm b)^2$, $(a\pm b)^3$, $(a+b)(a-b)$, $(a^3\pm b^3)$, (x^n-1) , Method of undetermined coefficients to find a polynomial of given degree; Rational Expressions - Simplification of rational expressions by factorization, Partial fractions: linear and quadratic factors; Graphs - Graphical representation of data, Interpreting a graph and answering questions based on it; Equations and simple inequalitiesroots of Linear Equations, quadratic equations, roots of a factored polynomial equation; solving equations with radicals and absolute value; solving simple linear inequalities, graphical representation of equations and inequalities

Unit 2 :	Sets - recalling: Definitions and Examples, types of sets,
Sets , Relations	algebra of sets, De Morgan Laws, venn diagrams, practical
and Functions	problems; Intervals - open and closed intervals, other
and Functions	types of intervals, neighbourhood of a Point; Cartesian
	product of sets - definition and examples; Relations -
	special relations: reflexive, symmetric, transitive, anti-
	symmetric and equivalence relations; Functions and
	Graphs of Algebraic functions - functions as a formula,
	real valued functions, identity function, polynomial
	functions, rational functions, absolute value functions,
	Signum functions, greatest integer functions; Algebra of
	functions - addition, subtraction, multiplication and
	quotient of functions, composition of functions, one to one
	and onto functions, Inverse of a function
Unit 3 :	Basic concepts - angles, signs of an angle, degree and
Trigonometry	radian measures, trigonometric ratios for all angles,
	basic trigonometric identities; Formulae for sum of
	angles and sum and products of trigonometric ratios -
	formulae for $sin(A \pm B)$, $cos (A \pm B)$,
	tan(A±B), sin2A, cos2A, tan2A, sin3A, cos3A, tan3A,
	sum and product formulae: sinC ± sinD, cosC± cosD
	sinAcosB, cosAcosB, sinAsinB; Trigonometric equations
	- general solutions of the trigonometric equations:
	$\sin \theta = \sin \alpha$, $\cos \theta = \cos \alpha$, $\tan \theta = \tan \alpha$, $a \cos \theta + b \sin \theta =$
	c; Properties of Triangles - sine and cosine rule: Projection
	and area formulae, application to triangles; Inverse
	trigonometric functions - definitions, Identities and simple
	problems
	-

Unit 4 :	Factorials - definition and examples; Permutations -
Combinatorics	fundamental principle of counting, permutation of distinct objects, not all distinct objects, simple problems; Combinations - definition, relation between Permutation and combinations, properties, simple problems;
	Mathematical Induction - principles, simple problems
Unit 5 :	Binomial theorem - Binomial theorem for positive integral
Finite and	index (proof using combinations and also by induction),
Infinite Series	applications of binomial theorem; Sequence and Series -
	AP, GP, HP: Terms and Sum of AP and GP, Arithmetic
	and Geometric means. Problems on sum of finite series,
	Arithmetico-geometric progression. $\sum n, \sum n^2$, $\sum n^3$ and
	telescopic sums for series like $\sum \frac{1}{n(n+1)}$; Infinite Series -
	Infinite Geometric Series; Infinite Arithmetico - Geometric
	Series; Infinite series using principle of telescopic sums;
	Exponential and logarithmic series (without proof);
	Binomial theorem for all rational index as an infinite
	series (without proof)
Unit 6 :	Locus of a point - definition and simple examples;
Two Dimensional	Straight lines - various forms of equation: Slope - point,
Analytic	Slope - intercept, two points, intercepts, normal and
geometry – I	parametric forms; general form; related problems; Pair of
	Straight lines - equation of a pair of straight lines,
	problems related with:
	distance of a point from a line, distance between two
	parallel lines, equation of a line bisecting the angle
	between two lines

[
Unit 7 :	Matrices - definition, concept and types of matrices,
Matrices and	operations of transpose, scalar multiplication, multiplying
Determinants -	a row or column by a number, adding two rows/columns,
I	reducing a matrix into triangular and echelon form,
	addition and multiplication of matrices, solving
	simultaneous linear equations by Gaussian Elimination
	Method; Determinants - definition of a determinant and
	its evaluations, properties of determinants, using
	properties of determinants to evaluate the value, product
	of determinants, determinant of a square matrix, singular
	and non-singular matrices
Unit 8 :	Soulars and Vector Concert of coolars and
Unit 8 :	Scalars and Vector - Concept of scalars and vectors,
Vectors –I	Magnitude and direction of a general vector, free vectors,
	localized vectors, zero vector, unit vector, negative of a
	vector, algebra of vectors, resolution of a vector, vector \rightarrow
	Arithmetic in space (3D) using $\vec{\iota}, \vec{j}, \vec{k}$, direction ratios and
	direction cosines; Vector Algebra - equality of vectors,
	collinear vectors, co-planar vectors, co-initial vectors, like
	vectors , unlike vectors, triangle law, parallelogram law,
	Polygon law; Applications of Vector Algebra - position
	vector of a point, distinction between position vectors and
	free vectors, section formulae, problems; Product of two
	vectors - angle between two vectors, definition of dot
	product, geometrical meaning, properties, definition of
	cross product, geometrical meaning, properties,
	applications to geometry, trigonometry and physics
Unit 9 :	Limits - approximations and errors, intuitive
Limits,Continuit	understanding of limit as an extension of approximation,

	Loft hand limits and Dight hand limits definition of Limit
y and	
Differentiability	properties of limit, Limit theorems, Standard limits
	$\lim_{x \to a} \frac{x^n - a^n}{x - a}, \lim_{x \to 0} \frac{\sin x}{x}, \lim_{x \to 0} \frac{e^x - 1}{x}, \lim_{x \to 0} \frac{\log(x + 1)}{x}, \text{ Evaluation}$
	of limits; Continuity - graphical meaning of continuity of a
	function, visual identification of continuity and
	discontinuity, formal definition of continuity , examples,
	points of discontinuity, kinds of discontinuity, algebra of
	continuous functions, composite function theorem,
	standard problems; Slope as Limits - finding the slope of
	straight lines and curves, definition of a derivative as
	limit, evaluation of simple derivatives; Differentiability -
	graphical understanding of differentiability and non-
	differentiability, formal definition of differentiability and
	examples, relation between continuity and
	differentiability, evaluation of derivatives using first
	principle, properties of derivatives, derivatives as a rate of
	change, slope of a straight line
Unit 10 :	Methods of differentiation - differentiation formulae:
	addition, product, quotient rules, derivative of composite
Differential	functions, power functions, trigonometric functions,
Calculus	derivative of implicit functions, parametric
	differentiation, meaning of second, third and higher
	order derivatives (with problems restricted to second
	order), differentiation of functions with respect to
	another functions

Unit 11 :	Indefinite integral as Anti-derivative - integration as anti-
Integral	derivative, properties of integrals and integrals of
Calculus	standard functions and also functions of the form $\sqrt{a^2 - x^2}$, $\sqrt{x^2 \pm a^2}$, $\frac{1}{a^2 + x^2}$, $\frac{1}{\sqrt{a^2 - x^2}}$, $\frac{1}{\sqrt{x^2 \pm a^2}}$; Methods of
	Integration - properties of integration, indefinite integrals: decomposition, substitution, partial fractions and integration by parts methods.

STATE COUNCIL OF EDUCATIONAL RESEARCH AND TRAINING TNCF 2017 - DRAFT SYLLABUS

Subject :Mathematics

Class : XII

TOPIC	CONTENT
Unit 1 :	Inverse of a Matrix - cofactor of a matrix,
Matrices and determinants -II	adjoint of a matrix, inverse of a matrix,
	uniqueness of inverse; Elementary
	Transformations - rank of a matrix, echelon
	form, inverse of a matrix using elementary
	transformations; System of linear equations -
	linear equations in matrix form, solving
	equations using Matrix Inverse method,
	consistency of the system of equations by
	Determinant method and Rank method
Unit 2 :	Introduction to Complex Numbers - need for
Complex Numbers	complex numbers; complex numbers as
	ordered pairs of real numbers; basic
	arithmetic operations on complex numbers;
	Algebra of complex numbers - conjugate of a
	complex number, modulus of a complex
	number, triangle inequality, problems; Polar
	form - argand plane as an extension of the
	real number line, geometrical representation
	of complex numbers, conjugate, modulus,
	addition and subtraction, polar form of a

	complex number and principal value of the
	argument; Demoivre's theorem - statement of
	Demoivre's theorem, Euler's formula, notation
	and polar form of unit circle, square roots,
	cube roots and fourth roots of unity, problems
	involving the cube roots of unity
Unit 3 :	3.1 Quadratic Equations - relation
Theory of Equations	between roots and coefficients,
	conditions for rational, irrational and
	complex roots, solving equations
	reducible to quadratic equation, graph of
	a quadratic function, minimum and
	maximum values, quadratic inequalities
	and sign of quadratic expression;
	Polynomial equations - fundamental
	theorem of algebra, formation of equation
	for the given roots, equations with
	rational coefficients when some of the
	irrational or complex roots are given,
	roots of third or higher degree polynomial
	equations when given in partly factorised
	form; Graphical approach to equations -
	using continuity of polynomial functions
	to find real roots by finding where the
	function changes sign, counting the
	number of positive, negative and complex
	roots using Descartes' rule of signs (no
	proof)

Unit 4 : Trigonometric functions and Inverse Trigonometric functions	4.1 Periodic functions - definition and examples, domain and Range of a function; Odd and Even functions - definitions and examples; Graphs of Trigonometric functions - graphs of sine, cosine, tangent, secant, cosecant, cotangent functions; Properties and graphs of inverse Trigonometric functions - domain and Range of Inverse Trigonometric functions, properties of Inverse Trigonometric functions, Simple problems, graphs of Inverse of sine, cosine, tangent, secant, cosecant, cotangent functions
Unit 5 : Two Dimensional Analytic Geometry - II	5.1 Conic sections - definition of a conic, general equation of a conic, sections of a cone; Circle - general form, standard forms, parametric form, verifying position of a given point; Parabola - standard equation: four types, properties, parametric form, simple problems and applications; Ellipse and Hyperbola - standard equation, parametric form, properties, simple problems and applications
Unit 6 : Vectors - II	6.1 Scalar Triple Product - definition of scalar triple product, geometric meaning and determinant form , properties, problems and applications; Vector Triple Product - definition of vector triple product, geometric meaning,

	properties, problems and applications; Straight lines - vector and cartesian equations of a straight line: two points form, one point and parallel to a vector form, direction ratios and cosines, angle between two lines, coplanar lines (intersecting, perpendicular, parallel), non-coplanar lines, distance between two parallel lines, two non-coplanar lines, a point and a line; Planes - vector and cartesian equations of a plane (Normal form, given one point and two parallel vectors, given two points and one parallel vector, given three points, passing through intersection of two planes), angle between two planes, angle between a line and a plane, meeting point of a line and a plane, distance between a point and a plane, distance between two parallel planes
Unit 7 : Applications of Derivatives	7.1 Derivatives as Slope and Rate of Change - meaning of derivative as slope, equations of tangent and normal, meaning of derivative as rate of change and related rates; Mean Value Theorem - Rolle's theorem, Lagrange's Mean Value Theorem, geometrical meaning, applications; Indeterminate forms - a limit process - l' Hôpital Rul, evaluating the limits; Sketching of elementary curves - increasing /

	decreasing – first derivative test, concavity / convexity – second derivative test, Asymptotes and symmetry, sketching of polynomial, rational, trigonometric, exponential and logarithmic curves; Extrema of functions - Extrema: Maxima and Minima using first and second derivative test, applications to optimization
Unit 8 : Differentials and Partial Derivatives	8.1 Differentials - definition and simple problems; Errors and Approximations - types of errors – finding approximate values, concepts of differentials; Partial Differentiation - First order and second order partial derivatives, Function of function rule (two and three variables), simple problems
Unit 9 : Applications of integration	Evaluation of definite integrals - geometric meaning of definite integrals, definite integrals (Riemann integral) as a limit of sums, fundamental theorem of integral calculus, evaluation of definite integrals by evaluating the anti-derivative, reduction formulae, Bernoulli's formula, Gamma integral, properties of definite integrals; Areas and Volumes - area bounded by a curve and coordinate axes (simple problems), area bounded by two curves, volume of a solid obtained by revolving area about an axis (simple problems)

lefinition of ordinary differential equations, order and degree of the ODE, general and particular solutions; Formation of differential
particular solutions: Formation of differential
articular solutions, i ormation of uncreman
quations - formation of differential equations
y eliminating arbitrary constants (atmost
wo constants), Modeling problems of
Population growth, Bacterial growth, Newton's
aw of cooling, Radio active decay; Solutions
f linear differential equations (First order) -
olutions of first order and first degree
lifferential equations: variable separable
nethod, homogenous differential equation,
inear differential equations, applications to
nodelling: Solving the differential equations
hat were formed for population growth,
acterial colony growth, Newton's laws of
ooling and radioactive decay
1.1 Introduction to Probability - classical
efinition, random experiment, sample space
nd events, sure-impossible-mutually
xclusive–exhaustive events; Laws on
probability - addition and multiplication
heorems, independent and dependent events,
onditional and total probability, Bayes'
heorem, simple problems; Probability
listributions - introduction to random
ariables, probability mass function,
probability density function, probability

distribution functions, probability, general
distribution, mathematical expectation, Mean
and Variance, binomial distribution