CHEMISTRY

SUBJECT SPECIFIC GUIDELINES FOR CLASS XII CHEMISTRY THEORY PAPER

- 1. The theory paper shall be of 70 marks and of 3 hrs duration.
- 2. The syllabus shall be in accordance with the core syllabus provided by COBSE.
- 3. The questions shall be from all the units.
- 4. The question paper shall have four sections A,B, C & D. Section A will have 8 questions of one mark each. Section B will have 10 questions of 2 marks each, Section C will have 9 questions of 3 marks each and Section D will have 3 questions of 5 marks each. Total number of questions will be 30.
- 5. All questions will be compulsory.
- 6. There will be no overall choice. However an internal choice will be provided in one question of section B, one question of section C and all the three questions of section D. A student has to attempt only one of the alternatives in such questions.
- 7. The student shall draw correct and neat diagram wherever asked.

Chemistry

Class XII

BASIC GUIDELINES FOR PRACTICALS:

- 1. Each student has to perform at least 15 experiments for which the list is provided.
- 2. Additional experiments may be done if the time permits.
- 3. Laboratory records should be maintained regularly. The experiments performed in a week should be recorded and submitted to the teacher for evaluation in the coming week.
- 4. Emphasis should be more on developing skills for different laboratory techniques and proper handling of apparatus.
- 5. Safety measures should be taken care of when the students are working in the laboratory [use of lab coats, safety glasses, proper handling/disposal of hazardous chemicals]
- 6. First aid box and charts related to safety measures should be available in the laboratory.
- 7. Each laboratory should have fire extinguishers and sand buckets.
- 8. Laboratory should have annual calendar for laboratory work.

Total practicals to be performed : 15
 Maximum marks : 30

3. Duration : 03 hours

Three experiments to be performed in the examination as follows:

1. Volumetric analysis

(8Marks)

Determination of strength/Molarity of $KMnO_4$ solution by titrating it against a standard solution of:

- (I) Ferrous ammonium sulphate (Mohr's salt)
- (II) Oxalic acid.

[note:-students will be required to prepare standard solution by weighing themselves]

2. Qualitative analysis

(8Marks)

Determination of one cation and one anion in a given salt. CATIONS- Pb^{2+} , Cu^{2+} , As^{3+} , Fe^{3+} , Mn^{2+} , Ni^{2+} , Zn^{2+} , Co^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+} , Mg^{2+} , NH_4^+ ANIONS- CO_3^{2-} , S^{2-} , SO_3^{2-} , SO_4^{2-} , NO_2^- , NO_3^- , CI^- , Br^- , I^- , PO_4^{3-} , $C_2O_4^{2-}$, CH_3COO^- (Note:- Insoluble salts excluded)

3. One of the following experiments

(6Marks)

- I. CHROMATOGRAPHY:- Separation of constituents present in an inorganic mixture containing two cations only (constituents having wide difference in R_f values to be provided).
- II. PREPARATION OF ORGANIC COMPOUNDS
- III. Tests for the functional groups present in organic compounds:
 Unsaturation, alcoholic, phenolic, aldehydic, ketonic, carboxylic and amino(primary) groups.
- IV. Characteristic tests of carbohydrates, fats and proteins in pure samples and their detection in given foods stuffs.
- V. Preparation of one lyophilic sol and lyophobic sol.

CHEMISTRY (CLASS XII) PRACTICALS

Evaluation Scheme for Examination	Marks
Volumetric analysis	8
Salt analysis	8
Content Based Experiments	6
Class record and Viva	4
Project work	4

SYLLABUS FOR PRACTICALS

A. SURFACE CHEMISTRY

(Periods - 6)

- (a) Preparation of one lyophilic sol and lyophobic sol.
- Lyophilic sol- starch, egg albumin, and gum.

Lyophobic sol- aluminium hydroxide, ferric hydroxide, arsenious sulphide.

(b) Study of the role of emulsifying agents in stabilizing the emulsions of different oils.

B. CHEMICAL KINETICS

(Periods-4)

- (a) Effect of concentration and temperature on the rate of reaction between sodium thiosulphate and hydrochloric acid.
- (b) Study of reaction rates of any one of the following:
 - (i) Reaction of lodide ionwith hydrogen peroxide at room temperature using different concentrations of lodide ions.
 - (ii) Reaction between potassium iodate (KIO₃) and sodium sulphite (Na₂SO₃)using starch solution as indicator(clock reaction).

C. THERMOCHEMISTRY

(Periods 4)

Any one of the following experiments:-

- (i) Enthalpy of dissolution of Copper Sulphate or potassium nitrate.
- (ii) Enthalpy of neutralization of strong acid (HCI) and strong base(NaOH).
- (iii) Determination of enthalpy change during interaction (Hydrogen bond formation) between acetone and chloroform.

D. ELECTROCHEMISTRY

(Periods-2)

Variation of cell potential in Zn/Zn^{2+} II Cu^{2+}/Cu with change in concentration of electrolytes($CuSO_4$ or $ZnSO_4$) at room temperature.

E. CHROMATOGRAPHY

(Periods -2)

- (i) Separation of pigments from extracts of leaves and flowers by paper chromatography and determination of R_f values.
- (ii) Separation of constituents present in an inorganic mixture containing two cations only (constituents having wide difference in R_I values to be provided).

F. PREPARATION OF INORGANIC COMPOUNDS

(Periods -4)

- (i) Preparation of double salt of ferrous ammonium sulphate or potash alum.
- (ii) Preparation of potassium ferric oxalate

G. PREPARATION OF ORGANIC COMPOUNDS

(Periods -4)

Preparation of any two of the following compounds:

- (i) Acetanilide
- (ii) Di-benzal acetone
- (iii) p-Nitroacetanilide
- (iv) Aniline yellow or 2-Napthol aniline dye
- (v) lodoform

H. Tests for the functional groups present in organic compounds:

(Periods-6)

Unsaturation, alcoholic, phenolic, aldehydic, ketonic, carboxylic and amino (primary) groups.

- Characteristic tests of carbohydrates, fats and proteins in pure samples and their detection in given food stuffs. (Periods-4)
- J. Determination of strength/Molarity of KMnO₄ solution by titrating it against a standard solution of (Periods -8)
 - (i) Ferrous ammonium sulphate(Mohr's salt),
 - (ii) Oxalic acid.

(Students will be required to prepare standard solutions by weighing themselves)

K. QUALITATIVE ANALYSIS

(Periods-14)

Determination of one cation and one anion in a given salt. CATIONS- Pb^{2+} , Cu^{2+} , As^{3+} , Fe^{3+} , Mn^{2+} , Ni^{2+} , Zn^{2+} , Co^{2+} , Ca^{2+} , Sr^{2+} , Ba^{2+} , Mg^{2+} , NH_4^+ ANIONS- CO_3^{2-} , S^{2-} , SO_3^{2-} , SO_4^{2-} , NO_2^- , NO_3^- , CI^- , Br^- , I^- , PO_4^{3-} , $C_2O_4^{2-}$, CH_3COO^- (NOTE: Insoluble salts excluded)

PROJECT WORK- wherever feasible, may include

- i) Model Preparation
- ii) Investigatory Project
- iii) Science Exhibits
- iv) Participation in Science fairs
- v) Testing of adulteration in food items.

Any investigatory project, which involves about 10 periods of work, can be chosen with the approval of teacher.

CHEMISTRY CLASS XII BLUE PRINT

Marks(Numbers)

OBJECTIVE			VLEDGE		1	,	TANDI				TION +	_			TAL	
FORM OF	E	SA1	SA2	VS	E	SA1	SA2	VSA	E	SA1	SA2	VSA	E	SA1	SA	VSA
QUESTION				Α							_				2	
Solid State								1 (1)			3				3	1
C - L - 4 '						2	l	(1)			(1)			2	(1)	(1)
Solutions		,				(1)					(1)			(1)	(1)	
Electroche-					5	(1)					(1)		5	(-)	(+)	
mistry					(1)								(1)			
Chemical					, · · · ·	 				2	3		301	2	3	
kinetics			1							(1)	(1)	l'i		(1)	(1)	
Surface			- 5	1					\vdash		3(1)			177	3	1
chemistry				(1)							(S)				(1)	(1)
General			3	14/	-						(5)		1	1	3	(-/
			(1)												(1)	
principles			1.27									R			(2)	-
and process of isolation																
of elements			-		5	2		1		-			5	2		1
p-block ele-					(1)	(1)		(1)					(1)	(1)		(1)
ments					3U+	121		(1)]		(1)	(1)		\
					25											
d and f-block		2					3							2	3	
elements		(1)					(1)							(1)	(1)	
Coordination							3								3	
compounds							(1)								(1)	
Haloalkanes		2))		2								2		
and halo-		(1)				(1)				1.				(2)		
renes						11.55			1							
Alchohols,								1			3(1)				3	1
phenols and							1.	(1)		V.	(S)				(1)	(1)
ethers								50								
Aldehydes,	5						1 1 1	1					5		-	1
ketones and	(1)							(1)					(1)			(1
carboxylic							l).		1							
acids						1	li .									
Organic	1	2					2 -			2				2		
compounds		(1)					U		1	(1)				(2)		
containing																
nitrogen																
Bio-				1		2		1						2		1
molecules				(1)		(1)		(1)						(1)		(2
Polymers		2						1						2		1
3.7		(1)						(1)						(1)		(1
Chemistry in			3(1)												3	
everyday life												Ī			(1)	
SUBTOTAL	5	8	6	2	10	8	6	6		4	15			20	27	8
F070 3/ 107	(1)	(4)	(2)	(2)	(2)	(4)	(2)	(6)		(2)	(5)		15	(10)	(9)	(8
						Y 72							(3)			
TOTAL				21				30				19				70
				(9)				(14)				(7)	1			(30

.

.

•

4

9

•

8

•

-

.

QUESTION PAPER DESIGN CHEMISTRY XII

SUBJECT :- CHEMISTRY

MARKS:-70

1. Weightage by objectives

DURATION:- 3 HOURS

Objective	Marks	% of total marks
Knowledge	21	30
Understanding	28	40
Application	13	18
SKILL	8	12

2. Weightage by content

		Title	S		Mark			
1	Solid state			·	4			
2	Solutions				5			
3	Electrochemistry							
4	Chemical Kinetics							
5	Surface Chemistry							
5		processes of isolation of	elements		3			
7	p-Block elements	p	Cicincites		8			
3	d and f –Block elemen	ts			1			
)	Coordination compour				5			
10	Haloalkanes and Haloa				3			
11	Alcohols, Phenols and				4			
12	Aldehydes , Ketones ar				4			
13	Organic compounds co				. 6			
4	Biomolecules	areaning with ogen			4			
5	Polymers							
16	Chemistry in everyday	lif o			3			
					3			
	3.Weightage by type	s of questions Number of questions	Max. Marks	Total				
			Max. Marks					
	Туре	Number of questions	Marks	Total 8 20				
	Type Very short questions Short answer ques-	Number of questions	Marks 1	8				
	Very short questions Short answer questions ~! Short answer ques-	Number of questions 8 10	Marks 1 2	8 20				
	Very short questions Short answer questions ~! Short answer questions-II Long answer ques-	Number of questions 8 10	Marks 1 2	8 20 27				
	Very short questions Short answer questions ~! Short answer questions-II Long answer questions	Number of questions 8 10 9 3	Marks 1 2	8 20 27 15				
	Very short questions Short answer questions ~! Short answer questions-!! Long answer questions 4. Difficulty level of the	Number of questions 8 10 9 3 question paper	Marks 1 2 3	8 20 27 15				
	Very short questions Short answer questions ~! Short answer questions-!! Long answer questions 4.Difficulty level of the	Number of questions 8 10 9 3 question paper MARKS	Marks 1 2 3 5 % of marks	8 20 27 15				
	Very short questions Short answer questions ~! Short answer questions-!! Long answer questions 4. Difficulty level of the	Number of questions 8 10 9 3 question paper	Marks 1 2 3	8 20 27 15				

	SAMPLE QUESTION PAPER	
	SUBJECT : CHEMISTRY Time: 3hours CLASS XII Maximum marks: 70	
	General instructions: a) All questions are compulsory. b) Questions 1 to 8 carry 1 mark each. Questions 9 to 18 carry 2 marks each. Questions 19 to 27 carry 3 marks each. Questions 28 to 30 carry 5 marks each.	
Q1	Which of the following is a macromolecular colloid: (a) Sulphur (b) Gold sol (c) Protein (d) Soap	1
Q 2	The IUPAC name of compound CH ₃ -CH-CH ₂ -CO-CH ₃ is: OH	
	(a) 4-oxopentan-2-ol (b) 2-oxopentan-4-ol (c) 4-hydroxypentan-2-one (d) 2-hydroxypentan-4-one	1
Q3	The helix structure of proteins is stabilized by: (a) peptide bonds (b) hydrogen bonds (c) disulphide bonds (d) van der Waals forces	1
Q 4	A mixed oxide has ccp arrangement in which the cations'X' occupy $1/3^{cd}$ of octahedral voids and the cations 'Y' occupy $1/3^{cd}$ of tetrahedral voids .The formula of oxide is : (a) $X_2Y_3O_2$ (b) XY_3O (c) X_2YO_3 (d) XY_2O_3	1
Q5	How is the presence of SO₂ gas detected ?	1
Q6	Glucose on reaction with HI gives n-hexane. What information does it give for the structure of glucose?	1
Q7	What is the role of Benzoyl peroxide in the free radical polymerization of ethene?	1
Q8	Why is 2-nitrophenol steam volatile whereas 4-nitrophenol is not?	1

.

Q9	What kind of deviation from Raoult's law is shown by the solution of ethanol and	2
	cyclohexane ? Give reason.	Ì
	OR	1
_	 i) At the same temperature Gas A is more soluble in water than gas B. Which of them will have a higher value of K_H? Give reason. ii) Why does boiling point of water increase on dissolving salt into it? 	2
Q10	For a reaction X—— P, following plot is observed:	2
	$\log \frac{[R]_0}{[R]}$ time(t)	
	 i) Predict the order of reaction and write the unit of rate constant(k). ii) Write the expression for slope of the line in the plot. 	
Q11	i) What is the function of Sulphur in vulcanization of rubber? ii) Arrange the following polymers in the increasing order of their intermolecular forces: Buna-N, PVC, Nylon6,6	2
Q12	Write chemical reactions involved in the preparation of : i) K_2MnO_4 from MnO_2 ii) $Na_2Cr_2O_7$ from Na_2CrO_4	2
Q13	Arrange the following in the increasing order of property indicated against each set : i) HF, HCl, HBr, Hl - bond dissociation enthalpy ii) H_2O , H_2S , H_2Se , H_2Te - acidic character	2
Q14	Account for the following: i) Allyl halide is highly reactive towards $S_N 1$ reaction. ii) C-Cl bond length in chlorobenzene is shorter as compared to C-Cl bond length in CH_3 -Cl.	2

Q15	Draw structure of majo	r product in each of the followi	ing reactions:	
		/ CH ₂ OH	V	
	i) /=	PCI ₅		2
		<i>→</i> OH <i>→</i>		
	ii) /-		Peroxide	
		CH ₂ -CH=CH ₂ + HBr	─	
Q16	Write the structures of	A and B in the following react	ions:	2
		CN LiAlH ₄	,	
	i) CH₃Br —	→ A → B		
	D= +VOH	CUCL Late Na OLL		
		$C_6H_5NH_2$ CHCl ₃ +alc.NaOH	В	
	, , , ,		-	2
Q17	1	conversion of each of following	ng in not more than two	2
	steps:			
	i) Aniline	to phenol		
	•	de to N-phenylethanamide		
Q18	i) Why do Amino acids I	pehave like salts?		2
		is responsible for the formation	n of polynucleotides?	
		w1		
Q19	_	nol ⁻¹) was dissolved in 100 g o ate the percentage ionization o		3
	(K _f for water= 1.86 K kg		i KCI.	
		, ,		
Q20	7	obtained during the first orde	r thermal decomposition of	
	PCI _s at a constant volum PCI _s (g)	re: → PCl ₃ (g) + Cl ₂ (g)		
	(0.5(6)	1 013/6/ 1 012/6/		
	Experiment	Time/s-1	Total pressure/atm	3
	1	0	0.4	
	2	100	0.7	
Q21	Calculate the rate const	ant.		1x3=3
C(ZI	Write the role of	·		
	· ·	ne extraction of Gold		
		extraction of Copper		
	iii) l ₂ in the re	fining of Zirconium		
		,		
	,			

.

		1
Q22	i) Which of the following complexes is more stable and why? [Co(NH ₃) ₆] ³⁺ and [Co(en) ₃] ³⁺ (where 'en' is ethane-1,2-diamine) ii) Write the formula for the following complex: Pentaamminechloridocobalt(III) sulphate	1x3=3
	iii) Write the type of hybridization and magnetic character of the complex $[Fe(CO)_5]$. [Atomic no. of $Fe = 26$]	2+1=3
Q23	a)For the given Freundlich adsorption isotherm, $\underline{x} = k p^{1/n}$, draw a plot between m	
	log (x/m) vs. log p.	12. 2
	b) Write two factors which are responsible for the stability of lyophilic sols.	1x3=3
Q24	Account for the following: i) Mn ²⁺ state is more stable than Fe ²⁺ towards oxidation to +3 state. ii) In 3d series,the enthalpy of atomization is lowest for Zinc. iii) Actinoids show wide range of oxidation states as compare to Lanthanoids.	
	OR	1x3=3
	Assign reasons for the following:	
	i) Actinoids show irregularities in their electronic configuration.	
	ii) In 3d series , E ⁰ (Cu ²⁺ /Cu) has positive value .	
	iii) Chromium metal is hard whereas Zinc metal is soft.	
Q25	a)Write the mechanism involved in the following reaction:	2+1=3
	CH₃-CH CH-CH₃HBr_▶ -CH₃ C CH₂CH₃	
	CH₃ OH CH₃	
	b) What product is formed when 3-methylphenol undergoes dinitration?	3
026		
Q26	An element with molar mass 64 gmol ⁻¹ and density 6.6 g cm ⁻³ forms a cubic unit cell. The edge length of unit cell is 4×10^{-8} cm. What is the type of cubic unit cell? (Given: $N_A = 6.022 \times 10^{23}$ mol ⁻¹)	3
Q27	a) What are biodegradable detergents? Give an example. b) Why is Amoxycillin called a broad spectrum antibiotic?	
Q28	a) Following reactions may occur at cathode during the electrolysis of aqueous so- dium chloride solution: $Na^{\dagger}(aq) + e \longrightarrow Na(s)$ $E^{0} = -2.71V$	
	Na [†] (aq) + e [†] \longrightarrow Na(s) E^0 = -2.71V	
	$H^{+}(aq) + e^{-} \longrightarrow 1/2H_{2}(g)$ $E^{0} = 0.00V$	
	On the basis of their standard electrode potential (E^0) values , which reaction is feasible at the cathode and why?	2+1+2

	b) Why does the cell potential of mercury cell remain constant throughout its life?	
	c) The resistance of a conductivity cell containing 0.001M KCl solution at 298K is 1500Ω . Calculate the cell constant if the conductivity of this cell is 0.15 x 10^{-3} S cm ⁻¹ ?	
	OR	
		5
	Calculate emf and $\Delta_r G$ of the following cell at 25°C:	
	Fe Fe ²⁺ (0.001M) H ⁺ (0.01M) H ₂ (g)(1 bar) Pt(s)	
	$E^{0}(Fe^{2+}1 Fe) = -0.44V$	
Q29	a) Write products of the following reactions:	
	i) H ⁺	
	$\begin{array}{c} \text{i)} & & \text{H}^{+} \\ & \text{O} & + \text{H}_{2}\text{N-OH} \end{array}$	
	(i) 0 0 11 0 11 0 11 0 11 0 11 0 11 0 11	
	ii) 2 C ₆ H ₅ CHO + conc. NaO H → − − − − − − − − − − − − − − − − − − 	
	Cl ₂ /P	
	iii) Cl₂-CH-COOH →	3
	b) Give simple chemical tests to distinguish between the following pairs of com-	2
	pounds:	-
	i) Ethanal and Propanal	
	ii) Phenol and Benzoic acid	
	OR	
	a)Account for the following:	
	i) α- Hydrogen of ethanal is acidic in nature.	
	ii) Benzoic acid does not give Friedal-Crafts reaction.	2,2,1
	b) Write the product formed when cyclohexanone reacts with following	
	reagents:	
İ	i) CH₃MgBr /H₃O [†] ii) dilute NaOH	
	c) Distinguish between CH ₂ =CH-CO-CH ₂ -CH ₃ and CH ₂ =CH-CH ₂ -CO-CH ₃ .	
	a) Account for the following:	
Q30	i) Interhalogens have higher boiling point than pure halogens.	
	ii) H ₃ PO ₂ is stronger reducing agent than H ₃ PO ₃ .	
	iii) Reducing character decreases from SO ₂ to TeO ₂ .	
	b) Draw structures of the following:	3,2
	i) $H_4P_2O_7$ ii) XeF_4	

.........

OR	
 a) i)Which poisonous gas is evolved when white phosphorus is heated with conc.NaOH solution? Write chemical equation involved in the reaction. ii) Among the noble gases, which one has the lowest boiling point? iii) Why is Fluorine stronger oxidizing agent than chlorine? 	3,2
b) Draw structures of the following i) H ₂ S ₂ O ₈ ii) (HPO ₃) ₃	i

MARKING SCHEME (CHEMISTRY) SAMPLE PAPER QUESTIONS

Q.no.	Answers	Marks
1	(c)	1
2	(c)	1
3	(b)	1
4	(d)	1
5	SO₂(g) on passing through KMnO₄ decolourises its purple colour / SO₂(g) on passing	1
	through K ₂ Cr ₂ O ₇ changes its colour from orange to green.	
	(Or any other suitable test)	
6	It shows that all the six carbon atoms of glucose are in a straight chain.	1
7	It acts as an initiator.	1
8	Because of intramolecular hydrogen bonding in 2-nitrophenol whereas 4-nitrophenol	1
	is associated through intermolecular hydrogen bonding.	
9	Positive deviation,	1
	Because of weaker interaction between ethanol and cyclohexane, the vapour pressure	1
	of solution becomes more than expected from ideal behaviour. OR	1
	i) Gas B ,Because higher the K _H value, lower the solubility of gas in water.	
	ii) Because addition of salt decreases the vapour pressure of water and therefore	1/2 ,1/2
	in order to boil the solution vapour pressure has to be increased which raise	
	the boiling point.	1
10	i) First order, unit of k: s ⁻¹ or min ⁻¹	1/2 ,1/2
	ii) Slope = k / 2.303	1
11	i) Sulphur produces the cross-links at the reactive sites of vulcanized rubber and	1
	thereby improves its properties like hardness, tensile strength etc. ii) Buna-N < PVC < Nylon6,6	1
12	ii) Buna-N < PVC < Nylon6,6 i) $2MnO_2 + 4KOH + O_2 \longrightarrow 2K_2MnO_4 + 2H_2O$	1
12		
	ii) $2Na_2CrO_4 + 2H^+ \longrightarrow Na_2Cr_2O_7 + 2Na^+ + H_2O$	1
13	i) HI <hbr <="" hcl="" hf<="" td=""><td></td></hbr>	
13	ii) $H_2O < H_2S < H_2Te$	1+1
2.0		1
14		-
	ii) Because of resonance in chlorobenzene C-Cl bond acquires partial double bond character and hence shorter than C-Cl of CH ₃ -Cl where there is no resonance /	
	or C of C-Cl in chlorobenzene is sp ² hybridized whereas of CH ₃ -Cl is sp ³ hybri-	
		1
4.5	dized.	1
15	i)	
	CH₂CI .	
	— он	
		1

	ii)	1+1
	CH ₂ -CH ₂ -CH ₂ -Br	
16	(i) $A = CH_3CN$ $B = CH_3-CH_2NH_2$	1/2 + 1/2
	(ii) $A = C_6H_5CONH_2$ $B = C_6H_5NC$	1/2 + 1/2
17	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
18	(or by any other suitable method) (i) Because it contains both acidic and basic groups in the same molecule.	1+1
10	(ii) Phosphodiester linkage	1
19	$\Delta T_f = iK_f m$	
	$0.24 \text{ K} = i \times 1.86 \text{ K kg mol}^{-1} \times 0.5 \times 1000 \text{kg}^{-1}$ $74.5 \text{ g mol}^{-1} 100$	1
	i = 1.922	1/2
	α (percentage ionization) = $\frac{i-1}{n-1}$	1/2
	= <u>1.922-1</u>	
	2-1	1
20	$\alpha = 0.922 \text{ or } 92.2\%$ $k = 2.303 \log p_i$	
20	t 2p _i -p _t	1
	$= 2.303 \cdot \log \qquad 0.4 $ $100 \qquad 2 \times 0.4 - 0.7$	1
	$= 2.303 \log 4$ 100 $= 2.303 \times 0.602$ 100	
	= 0.0138 atm ⁻¹	1

21	(i) Role of NaCN in the extraction of gold is to do the leaching of gold ore in the	
	presence of air from which the gold is obtained later by replacement.	
	or $4Au(s) + 8CN'(aq) + 2H_2O + O_2(g) \longrightarrow 4[Au(CN)_2]$	
	+ 40H	
	(ii) SiO ₂ is added in copper matte to convert the remaining FeS, FeO to slag.	
	FeO + SiO ₂ → FeSiO ₃ (slag)	
	(iii) Iodine is heated with Zirconium to form a volatile compound which on further heating decompose to give pure zirconium as shown:	
	Zr(impure) + 2l ₂	1x3=3
	ZrI_4 \longrightarrow $Zr(pure) + 2I_2$	183-3
22	i) [Co(en) ₃] ³⁺ , Because 'en' is a bidentate ligand and forms a chelate complex.	1/2, 1/2
	ii) [Co(NH ₃) ₅ Cl]SO ₄	1
	iii) dsp ³ , Diamagnetic	1/2, 1/2
23		
	log x slope = 1/n	
	log k	
	log p	2
	ii) Charge on sol and Solvent interaction	1
24	i)Because of stable half filled 3d ⁵ configuration whereas Fe ²⁺ easily oxidizes to Fe ³⁺ to	
	achieve stable 3d ⁵ configuration.	
	ii)Because of no unpaired electrons in 3d orbital of Zn which causes weak metallic	
	bonding.	
	iii)Because of comparable energies of 5f,6d and 7s orbitals.	1.20
	OR	1x3=3
	 i) Because of varying stability of 5f⁰, 5f⁷ and 5f¹⁴ configurations. ii) Because of its low enthalpy of hydration and high enthalpy of atomization. iii) Because of the presence of unpaired electrons in 3d orbitals of Cr, strong metallic bonding makes it hard whereas no unpaired electrons in 3d orbitals of Zn makes it soft. 	1x3=3
		1,0
		1

.

0

0

4

0

Ф

4

0

.

4

ù

0

0

φ

9

.

ø

9

0

0

4

0

.

.

Ф

•

	at all all all	
	a) CH ₃ - CH - CH - CH ₃ H ⁺ CH ₃ - CH - CH - CH ₃	
	CH ₃ O—H CH ₃ O—H ₂	
	\oplus	
	⊕ ⊕ ⊕	
I	-H ₂ O CH ₃ -CH-CH ₃ — CH ₃ – C - CH ₂ - CH ₃	
	CH₃ CH₃	
	2°carbocation 3°carbocation	
	Br	
	Br.	2
	CH ₃ - C - CH ₂ - CH ₃	
	CH₃	
	b) OH	1
	O ₂ N	1
	CH ₃	
	NO ₂	
 5		le le
	$d = \frac{z \times M}{a^3 \times N_A}$	
		lo
	$6.6 \text{ g cm}^{-3} = z \times 64 \text{ g mol}^{-1}$ $(4 \times 10^{-8} \text{ cm})^3 \times 6.022 \times 10^{23} \text{ mol}^{-1}$	1
	$(4 \times 10^{-8} \text{ cm})^3 \times 6.022 \times 10^{23} \text{ mol}^3$	
		1/
	$z = 6.6 \times 64 \times 10^{-24} \times 6.022 \times 10^{23}$	1/2
	64	
	$z = 3.97 \approx 4$	1
	Hence the unit cell is f.c.c.	1/2
.7	a)The detergents which are easily degraded by microorganisms are called	1
. /	biodegradable detergents.	
	Ex. Sodium lauryl sulphate (or any other ex.)	1
	b)Because it kills both gram positive as well as gram negative bacteria.	1

20		
28 ,	$H^{\dagger}(aq) + e^{-} \longrightarrow \frac{1}{2}H_{2}(g)$	
	reaction is feasible at cathode because reduction electrode potential of H*/H ₂ is more	1
	than Na [†] /Na.	1
		1
	b). Because overall reaction of mercury cell does not contain any ions whose	1
	concentration is variable.	100
		1
	c) $k = 1 (l/A)$	
	R R	
	· · · · · · · · · · · · · · · · · · ·	
	$0.15 \times 10^{-3} \text{ Scm}^{-1} - 1$ (1/A)	1/2
	$0.15 \times 10^{-3} \text{ Scm}^{-1} = \underbrace{1}_{1500 \text{ S}^{-1}} (l/A)$	
	,	1/2
	$l/A = 0.15 \times 10^{-3} \times 1500 \text{cm}^{-1}$	
		1
	= 0.225cm ⁻¹	
	OR	
	(ii) The cell reaction : Fe(s) + $2H^{+}$ (aq) \rightarrow Fe ²⁺ (aq) + H_{2} (g)	
		1
	$E^{\circ}_{cell} = E^{\circ}_{c} - E^{\circ}_{a}$	7
	= [0-(-0.44)]V = + 0.44V	
	$E_{cell} = E_{cell}^0 - 0.059 \log [Fe^{2+}]$	
	2 [H ⁺] ²	
		1
	$E_{cell} = 0.44 \text{ V} - \underline{0.059} \log (0.001)$	
	2 (0.01) ²	
	= 0.44 V - <u>0.059</u> log (10)	
	2	
	= 0.44 V - 0.0295 V	1
	= 0.410 V	
	$\Delta_r G = -nFE_{cell}$	1
	= -2x 96500 C mol ⁻¹ x 0.410V	
	= -79130 Jmol ⁻¹ or -79.130 kJmol ⁻¹	1
	- /5250 311101 01 /51250 1011101	

Ψ

.

Φ

Ф

ø

-

•

(a)	
i) N-OH	
ii)C ₆ H ₅ COO'Na ⁺ + C ₆ H ₅ CH ₂ OH	
iii)Cl ₃ -C-COOH	1x3=
(b)	
lodoform test. Warm each compound with iodine and sodium hydroxide on a	water
bath.	
Propanal (CH₃CH2CHO) No yellow ppt formed	
Ethanal (CH₃CHO) Yellow crystals of lodoform are formed.	
(Other relevant test can be accepted)	
(ii)Phenol and Benzoic acid.	
FeCl ₃ test. Add a few drops of neutral FeCl ₃ solution.	
Phenol (C_6H_5OH), violet coloured ppt. is produced.	
Benzoic acid (H_5C_6COOH), no ppt. is produced.	1+1
OR CONTRACTOR OF THE CONTRACTO	
 i) Because of resonance stabilisation of its conjugate base (enolate anior ii) Because the carboxyl group gets bonded to the catalyst anhyd. AICl₃(leasted) 	
acid).	
ОН	1+1
CH ₃	
ii) OH \\\\	
c) <i>lodoform test.</i> Warm each compound with iodine and sodium hydroxide on a	a water
bath.	1+1
(CH ₂ =CH ₂ -CO-CH ₂ -CH ₃): No yellow ppt formed	
(criz-criz co criz cris). No yellow ppt formed	

