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PREFACE 
 
 This book is designed in the light of the new guidelines and syllabi – 

2003 for the Higher Secondary Mathematics, prescribed for the Second Year, 

by the Government of Tamil Nadu.  

 The 21st century is an era of Globalisation, and technology occupies the 

prime position. In this context, writing a text book on Mathematics assumes 

special significance because of its importance and relevance to Science and 

Technology. 

 As such this book is written in tune with the existing international 

standard and in order to achieve this, the team has exhaustively examined 

internationally accepted text books which are at present followed in the reputed 

institutions of academic excellence and hence can be relevant to secondary 

level students in and around the country. 

 This text book is presented in two volumes to facilitate the students for 

easy approach. Volume I consists of Applications of Matrices and 

Determinants, Vector Algebra, Complex numbers and Analytical Geometry 

which is dealt with a novel approach. Solving a system of linear equations and 

the concept of skew lines are new ventures. Volume II includes Differential 

Calculus – Applications, Integral Calculus and its Applications, Differential 

Equations, Discrete Mathematics (a new venture) and Probability Distributions. 

 The chapters dealt with provide a clear understanding, emphasizes an 

investigative and exploratory approach to teaching and the students to explore 

and understand for themselves the basic concepts introduced. 

 Wherever necessary theory is presented precisely in a style tailored to 

act as a tool for teachers and students. 

 Applications play a central role and are woven into the development of 

the subject matter. Practical problems are investigated to act as a catalyst to 

motivate, to maintain interest and as a basis for developing definitions and 

procedures. 



  

 The solved problems have been very carefully selected to bridge the gap 

between the exposition in the chapter and the regular exercise set. By doing 

these exercises and checking the complete solutions provided, students will be 

able to test or check their comprehension of the material. 

 Fully in accordance with the  current goals in teaching and learning 

Mathematics, every section in the text book includes worked out and exercise 

(assignment) problems that encourage geometrical visualisation, investigation, 

critical thinking,  assimilation, writing and verbalization. 

 We are fully convinced that the exercises give a chance for the students 

to strengthen various concepts introduced and the theory explained enabling 

them to think creatively, analyse effectively so that they can face any situation 

with conviction and courage. In this respect the exercise problems are meant 

only to students and we hope that this will be an effective tool to develop their 

talents for greater achievements. Such an effort need to be appreciated by the 

parents and the well-wishers for the larger interest of the students. 

 Learned suggestions and constructive criticisms for effective refinement 

of the book will be appreciated. 

 

 K.SRINIVASAN 
 Chairperson 
 Writing Team. 
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1. APPLICATIONS OF MATRICES  
AND DETERMINANTS 

1.1. Introduction : 
 The students are already familiar with the basic definitions, the elementary 
operations and some basic properties of matrices. The concept of division is not 
defined for matrices. In its place and to serve similar purposes, the notion of the 
inverse of a matrix is introduced. In this section, we are going to study about the 
inverse of a matrix. To define the inverse of a matrix, we need the concept of 
adjoint of a matrix. 

1.2 Adjoint : 
 Let A = [aij] be a square matrix of order n. Let Aij be the cofactor of aij. 

Then the nth order matrix [Aij]
T is called the adjoint of A. It is denoted by adjA. 

Thus the adjA is nothing but the transpose of the cofactor matrix [Aij] of A. 

Result : If A is a square matrix of order n, then A (adjA) = | A | In = (adj A) A, 
where In is the identity matrix of order n. 

Proof : Let us prove this result for a square matrix A of order 3. 

  Let A = 







a11   a12   a13

a21   a22   a23

a31   a32   a33

 

  Then adj A = 







A11   A21   A31

A12   A22   A32

A13   A23   A33

 

  


The (i, j)th

element of A (adj A)
 = ai1 Aj1 + ai2 Aj2 + ai3 Aj3 = ∆ = | A | if i = j 

   = 0  if i ≠ j 

  ∴ A (adj A) = 









| A |    0    0

0    | A |    0

0    0    | A |

 = | A | 









1   0   0

0   1   0

0   0   1

 = | A | I3 

 Similarly we can prove that (adj A)A = | A | I3 
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 ∴ A (adj A) = | A | I3 = (adj A) A 

 In general we can prove that A (adj A) = | A | In = (adj A) A. 

Example 1.1 : Find the adjoint of the matrix   A  =   



a   b

c   d
 

Solution: The cofactor of a is d, the cofactor of b is − c, the cofactor of c is − b 
and the cofactor of d is a. The matrix formed by the cofactors taken in order is 
the cofactor matrix of A. 

  ∴ The  cofactor matrix of A is = 






d    − c

− b    a
 . 

 Taking  transpose of the cofactor matrix, we get the adjoint of A. 

  ∴ The adjoint of A = 






d    − b

− c    a
 

Example 1.2 : Find the adjoint of the matrix A = 







1    1    1

1    2    − 3

2   − 1    3

 

Solution: The cofactors are given by 

  Cofactor of 1  =  A11 = 






2    − 3

− 1    3
 = 3 

  Cofactor of 1  =  A12 =  − 






1   − 3

2    3
 =  − 9 

  Cofactor of 1  =  A13 = 






1    2

2   − 1
 = − 5 

  Cofactor of 1  =  A21 = − 






1    1

− 1   3
 = − 4 

  Cofactor of 2   =   A22 = 



1   1

2   3
 = 1 

  Cofactor of − 3   =   A23 = − 






1    1

2   − 1
 = 3 

  Cofactor of 2  =  A31 =  






1    1

2   − 3
 = − 5 
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  Cofactor of − 1  =  A32 = −  






1    1

1   − 3
 = 4 

  Cofactor of 3  =  A33 =  



1   1

1   2
 = 1 

  The Cofactor matrix of A is  [Aij] = 







3    − 9   − 5

− 4    1    3

− 5    4    1

 

  ∴  adj A  =  (Aij)
T = 







3    − 4   − 5

− 9    1    4

− 5    3    1

 

Example 1.3 : If A = 






− 1   2

1   − 4
, verify the result A (adj A) = (adj A) A = | A | I2 

Solution:  A = 






− 1    2

1    − 4
,  | A | =  







− 1    2

1    − 4
 = 2 

  adj A = 






− 4   − 2

− 1   − 1
 

  A (adj A) = 






− 1    2

1    − 4
 






− 4   − 2

− 1   − 1
 = 



2   0

0   2
 = 2 



1   0

0   1
 = 2I2  … (1) 

  (adj A) A = 






− 4   − 2

− 1   − 1
 






− 1    2

1    − 4
 = 



2   0

0   2
 =  2 



1   0

0   1
 = 2I2  … (2) 

 From (1) and (2) we get 

  ∴ A (adj A) = (adj A) A = | A | I2. 

Example 1.4 : If A = 







1   1    1

1    2    − 3

2   − 1    3

, verify A (adj A) = (adj A) A = | A | I3 

Solution:  In example 1.2, we have found  

  adj A = 







3    − 4   − 5

− 9    1    4

− 5    3    1
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  | A |  = 







1   1    1

1    2    − 3

2   − 1    3

 = 1(6 − 3) − 1 (3 + 6) + 1(− 1 − 4) = − 11 

  A (adj A) = 







1   1    1

1    2    − 3

2   − 1    3

  







3    − 4   − 5

− 9    1    4

− 5    3    1

  = 







− 11    0    0

0    − 11    0

0    0    − 11

 

   = − 11 









1   0    0

0   1   0

0   0   1

 = − 11 I3 = | A | I3 …(1) 

  (adj A) A = 







3    − 4   − 5

− 9    1    4

− 5    3    1

  







1   1    1

1    2    − 3

2   − 1    3

 = 







− 11    0    0

0    − 11    0

0    0    − 11

 

  = − 11 









1   0    0

0   1   0

0   0   1

  = − 11 I3 = | A | I3 …(2) 

 From (1) and (2) we get 
  A(adj A) = (adj A) A = | A | I3   

1.3 Inverse : 
 Let A be a square matrix of order n. Then a matrix B, if it exists, such that 
AB = BA = In is called inverse of the matrix A. In this case, we say that A is an 

invertible matrix. If a matrix A possesses an inverse, then it must be unique. To 
see this, assume that B and C are two inverses of A, then 

   AB = BA  =  In … (1) 

   AC = CA  =  In … (2) 

   Now AB = In 

  ⇒ C(AB) = CIn  ⇒ (CA)B  = C     (Q associative property) 

  ⇒  InB = C ⇒  B = C 

 i.e., The inverse of a matrix is unique. Next, let us find a formula for 
computing the inverse of a matrix. 

 We have already seen that, if A is a square matrix of order n, then 
   A(adj A) = (adj A)A = | A | In 
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 If we assume that A is non-singular, then | A | ≠ 0. 

 Dividing the above equation by | A |, we get 

  A 






1

| A | (adj A)   = 






1

| A | (adj A)  A  =  In. 

 From this equation it is clear that the inverse of A is nothing but  
1

| A |  (adj A). We denote this by A−1. 

 Thus we have the following formula for computing the inverse of a matrix 
through its adjoint.  

 If A is a non-singular matrix, there exists an inverse which is given by  

A−1 = 
1

| A |  (adj A). 

1.3.1 Properties : 
1. Reversal Law for Inverses : 
 If A, B are any two non-singular matrices of the same order, then AB is also 
non-singular and 

   (AB)−1 = B−1 A−1 

 i.e., the inverse of a product is the product of the inverses taken in the 
reverse order. 

Proof :  Since A and B are non-singular, | A | ≠ 0 and | B | ≠ 0. 

 We know that | AB | = | A |   | B | 

 | A | ≠ 0,   | B | ≠ 0   ⇒  | A |  | B |  ≠ 0   ⇒   | AB | ≠ 0 

 Hence AB is also non-singular. So AB is invertible. 

  (AB) (B−1A−1) = A (BB−1)A−1 

   = AIA−1 = AA−1 = I 

 Similarly we can show that (B−1A−1) (AB) = I 

  ∴ (AB) (B−1A−1) = (B−1A−1) (AB) = I 

 ∴ B−1 A−1is the inverse of AB. 

  ∴  (AB)−1 = B−1 A−1 

2. Reversal Law for Transposes (without proof) : 

 If A and B are matrices conformable to multiplication, then (AB)T = BTAT. 
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 i.e., the transpose of the product is the product of the transposes taken in 
the reverse order. 

3. For any non-singular matrix A,  (AT)
−1

 = (A− 1)
T
 

Proof : We know  that AA−1 = I  =  A−1 A 

 Taking transpose on both sides of AA−1 = I, we have  (AA−1)
T
 = IT 

 By reversal law for transposes we get 

  (A−1)
T
 AT = I … (1) 

 Similarly, by taking transposes on both sides of A−1A = I, we have 

  AT(A−1)
T
 = I … (2) 

 From (1) & (2) 

  (A−1)
T
 AT = AT (A−1)

T
 = I 

 ∴ (A−1)
T 

is the inverse of AT 

  i.e.,          (AT)
−1

 = (A− 1)
T 

1.3.2 Computation of Inverses 
 The following examples illustrate the method of computing the inverses of 
the given matrices. 
Example 1.5 : Find the inverses of the following matrices : 

      (i) 






− 1    2

1    − 4
     (ii) 







2    − 1

− 4    2
   (iii) 







cos α    sin α

− sin α   cos α
   (iv) 







3    1    − 1

2   − 2    0

1    2    − 1

 

Solution:   

(i) Let A = 






− 1    2

1    − 4
,  Then | A | = 







− 1    2

1    − 4
 = 2 ≠ 0 

 A is a non-singular matrix. Hence it is invertible. The matrix formed by the 
cofactors is 

  [Aij] = 






− 4   − 1

− 2   − 1
 

  adj A = [Aij]
T  =  







− 4   − 2

− 1   − 1
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  A− 1 = 
1

| A |  (adj A)  =  
1
2  







− 4   − 2

− 1   − 1
  =  









− 2   − 1

− 
1
2   − 

1
2

 

(ii) Let A = 






2    − 1

− 4    2
 .   then | A | = 







2    − 1

− 4    2
 = 0 

 A is singular. Hence A−1 does not exist. 

(iii) Let A = 






cos α    sin α

− sin α   cos α
 .  Then | A | = 







cos α    sin α

− sin α   cos α
  

    = cos2α + sin2α = 1 ≠ 0 

 ∴ A is non singular and hence it is invertible 

  Adj A = 






cos α   − sin α

 sin α    cos α
 

  A−1 = 
1

| A |  (Adj A) = 
1
1 







cos α   − sin α

 sin α    cos α
 = 







cos α   − sin α

 sin α    cos α
 

(iv) Let A = 







3    1    − 1

2   − 2    0

1    2    − 1

 .  Then | A | = 







3    1    − 1

2   − 2    0

1    2    − 1

 = 2 ≠ 0 

 A is non-singular and hence A− 1 exists 

  Cofactor of 3  =  A11 = 






− 2    0

2    − 1
 = 2 

  Cofactor of 1  =  A12 = − 






2    0

1   − 1
 =  2 

  Cofactor of − 1  =  A13 = 






2   − 2

1    2
 = 6 

  Cofactor of 2  =  A21 = − 






1   − 1

2   − 1
 = − 1 

  Cofactor of − 2   =   A22 = 






3   − 1

1   − 1
 =  − 2 

  Cofactor of 0   =   A23 = − 



3   1

1   2
 =  − 5 
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  Cofactor of 1  =  A31 =  






1    − 1

− 2    0
 = − 2 

  Cofactor of 2  =  A32 = −  






3   − 1

2    0
 = − 2 

  Cofactor of − 1  =  A33 =  






3    1

2   − 2
 = − 8 

 [Aij] = 







2    2    6

− 1   − 2   − 5

− 2   − 2   − 8

 ; adj A = 







2   − 1   − 2

2   − 2   − 2

6   − 5   − 8

 

 A−1 = 
1

| A |  (adj A) = 
1
2  







2   − 1   − 2

2   − 2   − 2

6   − 5   − 8

 

  = 







1   − 

1
2   − 1

1   − 1   − 1

3   − 
5
2   − 4

 

Example 1.6 : If A = 



1   2

1   1
 and B = 







0   − 1

1    2
 verify that (AB)−1 = B−1 A−1. 

Solution:   

 | A | = − 1 ≠ 0 and | B | = 1 ≠ 0 

 So A and B are invertible. 

  AB = 



1   2

1   1
  






0   − 1

1    2
  =  



2   3

1   1
 

  | AB | = 



2   3

1   1
 = − 1 ≠ 0. So AB is invertible. 

  adj A = 






1    − 2

− 1    1
 

  A−1 = 
1

| A |  (adj A)  =  






− 1    2

1    − 1
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  adj B = 






2    1

− 1   0
 

  B−1 = 
1

| B |   (adj B)  =  






2    1

− 1   0
 

  adj AB = 






1    − 3

− 1    2
 

  (AB)−1 = 
1

| AB |  (adj AB) = 






− 1    3

1    − 2
  … (1) 

  B−1 A−1 = 






2    1

− 1   0
  






− 1    2

1    − 1
  =  







− 1    3

1    − 2
 … (2) 

 From (1) and (2) we have (AB)−1 = B−1 A−1. 

EXERCISE 1.1 
  (1) Find the adjoint of the following matrices : 

  (i) 






3   − 1

2   − 4
 (ii) 









1   2   3

0   5   0

2   4   3

         (iii) 









2   5   3

3   1   2

1   2   1

 

 (2) Find the adjoint of the matrix A = 






1    2

3   − 5
 and verify the result  

  A (adj A) = (adj A)A = | A | . I 

 (3) Find the adjoint of the matrix A = 







3   − 3   4

2   − 3   4

0   − 1   1

 and verify the result  

  A (adj A) = (adj A)A = | A | . I 
 (4) Find the inverse of each of the following matrices : 

  (i) 







1    0    3

2    1    − 1

1   − 1    1

 (ii) 









1   3   7

4   2   3

1   2   1

 (iii) 







1    2    − 2

− 1    3    0

0    − 2    1

 

  (iv) 







8    − 1   − 3

− 5    1    2

10    − 1   − 4

 (v) 









2   2   1

1   3   1

1   2   2
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 (5) If A = 



5   2

7   3
  and B = 







2    − 1

− 1    1
 verify that 

  (i) (AB)−1 = B−1 A−1 (ii) (AB)T = BTAT 

 (6) Find the inverse of the matrix A = 







3   − 3   4

2   − 3   4

0   − 1   1

 and verify that A3 = A− 1 

 (7) Show that the adjoint of A = 







− 1   − 2   − 2

2    1    − 2

2    − 2    1

 is 3AT. 

 (8) Show that the adjoint of A = 









− 4   − 3   − 3

1    0    1

4    4    3

 is A itself. 

 (9) If A = 
1
3   







2    2    1

− 2    1    2

1    −2   2

, prove that A−1 = AT. 

 (10) For A =  







− 1    2    − 2

4    − 3    4

4    − 4    5

, show that A = A−1 

1.3.3 Solution of a system of linear equations by Matrix 
Inversion method : 

 Consider a system of n linear non-homogeneous equations in n unknowns  
x1, x2, x3 ………xn. 

 a11 x1 + a12 x2 + ………… + a1n xn = b1 

 a21 x1 + a22 x2 + ………… + a2n xn = b2 

 …………………………………………… 

 …………………………………………… 

 an1x1 +  an2 x2 + …………… + ann xn = bn 
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 This is of the form  









a11    a12  …  a1n

a21    a22  …    a2n

…    …    …    …

…   …  … …

 an1   an2   …   ann

   











x1

x2

…

…

xn

 = 











b1

b2

 …

…

bn

 

 Thus we get the matrix equation AX = B … (1) where 

 A =  









a11    a12  …  a1n

a21    a22  …    a2n

…    …    …    …

…   …  … …

 an1   an2   …   ann

 ;  X = 











x1

x2

…

…

xn

 ; B = 











b1

b2

 …

…

bn

 

 If the coefficients matrix A is non-singular, then A−1 exists. Pre-multiply 

both sides of (1) by A−1 we get 

  A−1 (AX) = A−1B 

  (A−1A)X = A−1B 

  IX = A−1B 

  X = A−1B is the solution of (1) 

 Thus to determine the solution vector X we must compute A−1. Note that 
this solution is unique. 

Example 1.7 : Solve by matrix inversion method x + y = 3,   2x + 3y = 8 

Solution:   

 The given system of equations can be written in the form of  

  



1   1

2   3
  



x

y
 =  



3

8
 

  AX = B 

 Here | A | = 



1   1

2   3
 = 1 ≠ 0 
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 Since A is non-singular, A−1 exists. 

  A−1 = 






3    − 1

− 2    1
 

 The solution is X = A−1B 

  



x

y
 = 







3    − 1

− 2    1
  



3

8
 

  



x

y
 = 



1

2
 

  x = 1,   y = 2 

Example 1.8 : Solve by matrix inversion method 2x − y + 3z = 9,  x + y + z = 6, 
x − y + z = 2 

Solution : The matrix equation is 

  







2   − 1   3

1    1    1

1   − 1   1

  









x

 y

 z

 = 









 9

 6

 2 

 

 A X = B, where  A = 







2   − 1   3

1    1    1

1   − 1   1

,   X = 









x

 y

 z

  and B = 









 9

 6

 2 

 

  | A | = 







2   − 1   3

1    1    1

1   − 1   1

  =  − 2 ≠ 0 

 A is a non-singular matrix and hence A−1 exists. 

 The cofactors are A11 = 2,  A12 = 0,  A13 = − 2 

 A21 = − 2,  A22 = − 1,   A23 = 1,   A31 = − 4, A32 = + 1,  A33 = 3 

 The matrix formed by the cofactors is 

  [Aij] = 







2    0    − 2

− 2   − 1    1

− 4    1    3
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  The adjoint of A = 







2    − 2   − 4

0    − 1    1

− 2    1    3

 = adj A 

  Inverse of A = 
1

| A |  (adj A) 

  A−1 = − 
1
2  







2    − 2   − 4

0    − 1    1

− 2    1    3

 

  The solution is given by  X = A−1B 

  









x

 y

 z

 = − 
1
2  







2    − 2   − 4

0    − 1    1

− 2    1    3

 









 9

 6

 2 

 

   = − 
1
2  







 − 2

 − 4

 − 6 

 = 









 1

 2

 3 

 

 ∴ x = 1,  y = 2, z = 3 
EXERCISE 1.2 

Solve by matrix inversion method each of the following system of linear 
equations : 
 (1) 2x − y = 7, 3x − 2y = 11 
 (2) 7x + 3y = − 1, 2x + y = 0 
 (3) x + y + z = 9, 2x + 5y + 7z = 52, 2x + y − z = 0 
 (4) 2x − y + z = 7, 3x + y − 5z = 13, x + y + z = 5 
 (5) x − 3y − 8z + 10 = 0, 3x + y = 4, 2x + 5y + 6z = 13 

1.4 Rank of a Matrix : 
 With each matrix, we can associate a non-negative integer, called its rank. 
The concept of rank plays an important role in solving a system of 
homogeneous and non-homogeneous equations. 
 To define rank, we require the notions of submatrix and minor of a matrix. 
A matrix obtained by leaving some rows and columns from the matrix A is 
called a submatrix of A. In particular A itself is a submatrix of A, because it is 
obtained from A by leaving no rows or columns. The determinant of any square 
submatrix of the given matrix A is called a minor of A. If the square submatrix 
is of order r, then the minor is also said to be of order r. 
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Definition : 
 The matrix A is said to be of rank r, if  
 (i) A has atleast one minor of order r which does not vanish. 
 (ii) Every minor of A of order (r + 1) and higher order vanishes. 
 In other words, the rank of a matrix is the order of any highest order non 
vanishing minor of the matrix. 
 The rank of A is denoted by the symbol ρ(A). The rank of a null matrix is 
defined to be zero. 
 The rank of the unit matrix of order n is n. The rank of an m × n matrix A 
cannot exceed the minimum of m and n. i.e., ρ(A) ≤ min {m, n}. 

Example 1.9 : Find the rank of the matrix  






7   − 1

2    1
 

Solution : Let A = 






7   − 1

2    1
 . This is a second order matrix. 

 ∴ The highest order of minor of A is also 2. 

 The minor is given by 






7   − 1

2    1
 = 9 ≠ 0 

 ∴ The highest order of non-vanishing minor of A is 2.  Hence ρ(A) = 2. 

Example 1.10 : Find the rank of the matrix  






2    − 4

− 1    2
 

Solution : Let A = 






2    − 4

− 1    2
 .  

 The highest order minor of A is given by 






2    − 4

− 1    2
 = 0. Since the second 

order minor vanishes ρ(A) ≠ 2. We have to try for atleast one non-zero first 
order minor, i.e., atleast one non-zero element of A. This is possible because A 
has non-zero elements  ∴  ρ(A) = 1. 

Example 1.11 : Find the rank of the matrix  







1    − 2    3

− 2    4    − 6

5    1    − 1

 

Solution : Let A = 







1    − 2    3

− 2    4    − 6

5    1    − 1
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 The highest order minor of A is  

  







1    − 2    3

− 2    4    − 6

5    1    − 1

 = − 2  







1   − 2    3

1   − 2    3

5    1    − 1

 = 0 

 Since the third order minor vanishes, ρ(A) ≠ 3 

  






− 2   4

5    1
 = − 22 ≠ 0    

 ∴ A has atleast one non-zero minor of order 2.   ∴  ρ(A) = 2 

Example 1.12 : Find the rank of the matrix  







1    1    1    3

2   − 1   3    4

5   − 1   7   11

 

Solution : Let A = 







1    1    1    3

2   − 1   3    4

5   − 1   7   11

  

 This is a matrix of order 3 × 4 

 ∴ A has minors of highest order 3. They are given by  

  







1    1    1

2   − 1   3

5   − 1   7

 = 0   ;  







1    1    3

2   − 1    4

5   − 1   11

 = 0  ; 

  









1   1    3

2   3    4

5   7   11

 = 0  ;  







1    1    3

− 1   3    4

− 1   7   11

  =  0 

 All the third order minors vanish.   ∴ ρ(A) ≠ 3 
 Next, we have to try for atleast one non-zero minor of order 2. This is 

possible, because A has a 2nd order minor 






1    1

2   − 1
 = − 3 ≠ 0    ∴  ρ(A) = 2 

Note :  In the above examples, we have seen that the determination of the rank 
of a matrix involves the computation of determinants. The computation of 
determinants may be greatly reduced by means of certain elementary 
transformations of its rows and columns. These transformations will greatly 
facilitate our dealings with the problem of the determination of the rank and 
other allied problems. 
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1.4.1. Elementary transformations on a Matrix: 
 (i) Interchange of any two rows (or columns) 
 (ii) Multiplication of each element of a row (or column) by any non-zero 

scalar. 
 (iii) Addition to the elements of any row (or column) the same scalar 

multiples of corresponding elements of any other row (or column) 
 the above elementary transformations taken inorder can be represented by 
means of symbols as follows : 

 (i) Ri ↔ Rj   (Ci ↔ Cj) ;                  (ii) Ri → kRi   (Ci → kCi) 

 (ii) Ri → Ri + kRj  (Ci → Ci + kCj) 

 Two matrices A and B of the same order are said to be equivalent if one 
can be obtained from the other by the applications of a finite sequence of 
elementary transformation “The matrix A is equivalent to the matrix B” is 
symbolically denoted by A ∼ B. 
Result (without proof) : 
 “Equivalent matrices have the same rank” 
Echelon form of a matrix : 
    A matrix A (of order m × n) is said to be in echelon form (triangular form) if 
 (i) Every row of A which has all its entries 0 occurs below every row 

which has a non-zero entry. 
 (ii) The first non-zero entry in each non-zero row is 1. 
 (iii) The number of zeros before the first non-zero element in a row is less 

than the number of such zeros in the next row. 
 By elementary operations one can easily bring the given matrix to the 
echelon form. 
Result  (without proof) : 
 The rank of a matrix in echelon form is equal to the number of non-zero 
rows of the matrix. 
Note :   
 (1) The above result will not be affected even if condition (ii) given in the 

echelon form is omitted. (i.e.) the result holds even if the non-zero 
entry in each non-zero row is other than 1. 

 (2) The main advantage of echelon form is that the rank of the given 
matrix can be found easily. In this method we don’t have to compute 
determinants. It is enough, if we find the number of non-zero rows. 



 17

 In the following examples we illustrate the method of finding the rank of 
matrices by reducing them to the echelon form. 

Example 1.13 : Find the rank of the matrix  







1    1    − 1

2   − 3    4

3   − 2    3

 

Solution : Let A = 







1    1    − 1

2   − 3    4

3   − 2    3

  

   







1    1    − 1

0   − 5    6

0   − 5    6

   
R2   →   R2   −  2R1

R3   →   R3   −  3R1
 

    







1    1    − 1

0   − 5    6

0    0    0

  R3 → R3 − R2 

 The last equivalent matrix is in echelon form. The number of non-zero 
rows is 2.   ∴ ρ(A) = 2 

Example 1.14 : Find the rank of the matrix  







1   2   3   − 1

2   4   6   − 2

3   6   9   − 3

 

Solution : Let A = 







1   2   3   − 1

2   4   6   − 2

3   6   9   − 3

   

    









1   2   3   − 1

0   0   0    0

0   0   0    0

 
R2   →   R2   −  2R1

R3   →   R3   −  3R1
 

 This equivalent matrix is in the echelon form. Since the number of  
non-zero rows of the matrix in this echelon form is 1, ρ(A) = 1. 

Example 1.15 : Find the rank of the matrix  









4   2   1   3

6   3   4   7

2   1   0   1
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Solution : Let A = 









4   2   1   3

6   3   4   7

2   1   0   1

   

   









1    2    4   3

4    3    6   7

0    1   2   1

  C1 ↔  C3 

   









1    2    4    3

0   − 5   − 10   − 5

0    1    2    1

  R2 → R2 − 4R1 

    









1   2   4   3

0   1   2   1

0   1   2   1

 R2 → − 
1
5  R2 

    









1   2   4   3

0   1   2   1

0   0   0   0

 R3 → R3 − R2 

 The last equivalent matrix  is in the echelon form. 

 The number of non-zero rows in this matrix is two.  ∴  ρ(A) = 2 

Example 1.16 : Find the rank of the matrix  







3    1    − 5   − 1

1   − 2    1    − 5

1    5    − 7    2

 

Solution : Let A = 







3    1    − 5   − 1

1   − 2    1    − 5

1    5    − 7    2

    







1   − 2    1    − 5

3    1    − 5   − 1

1    5    − 7    2

  R1 ↔  R2 

   







1   − 2    1    − 5

0    7    − 8    14

0    7    − 8    7

  
R2   →   R2   − 3R1

R3   →   R3   −   R1
 

    







1   − 2    1    − 5

0    7    − 8    14

0    0    0    − 7

 R3 → R3  −  R2 

 The last equivalent matrix is in the echelon form. 

 It has three non-zero rows.   ∴ ρ(A) = 3 
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EXERCISE 1.3 

Find the rank of the following matrices : 

 (1)  







1    1    − 1

3   − 2    3

2   − 3    4

            (2)  









6   12   6

1    2    1

4    8    4

  (3)  









3   1    2    0

1   0   − 1   0

2   1    3    0

 

 (4) 







0    1    2    1

2   − 3    0    − 1

1    1    − 1    0

  (5) 







1   2   −1    3

2   4    1    − 2

3   6    3    − 7

 (6) 







1    − 2    3    4

− 2    4    − 1   − 3

− 1    2    7    6

 

1.5 Consistency of a system of linear equations : 
 The system of linear equations arises naturally in many areas of Science, 
Engineering, Economics and Commerce. The analysis of electronic circuits, 
determination of the output of a chemical plant, finding the cost of chemical 
reaction are some of the problems which depend on the solutions of 
simultaneous linear equations. So, finding methods of solving such equations 
acquire considerable importance. In this connection methods using matrices and 
determinants play an important role. 

 We have already seen the idea of solving a system of linear equations by 
the matrix inversion method. This method is applicable provided the number of 
equations is equal to the number of unknowns, and the coefficient matrix is 
non-singular. Also the solution obtained under this method is unique. But this is 
not so in all cases. For many of the problems the number of equations need not 
be equal to the number of unknowns. In such cases, we see that any one of the 
following three possibilities can occur. The system has  (1) unique solution (2) 
more than one solution (3) no solution at all. 

 Cases (1) and (3) have no significant role to play in higher studies. 
Although there exist many solutions, in some cases all the points in the solution 
are not attractive. Some provide greater significance than others. We have to 
select the best point among them. In this section we are going to discuss the 
following two methods. 

 (1) Cramer’s rule method (or Determinant method) 

 (2) Rank method 

 These methods not only decide the existence of a solution but also help us 
to find the solution (if it exists) of the given system. 
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1.5.1 The Geometry of Solution sets : 
 The solution set of a system of linear equations is the intersection of the 
solution sets of the individual equations. That is, any solution of a system must 
be a solution of each of the equations in that system. 
 The equation ax = b (a ≠ 0) has only one solution, namely x = b/a and it 
represents a point on the line. Similarly, a single linear equation in two 
unknowns has a line in the plane as its solution set and a single linear equation 
in three unknowns has a plane in space as its solution set. 
Illustration I : (No. of unknowns ≥ No. of equations) 
 Consider the solution of the following three different problems. 
 (i) 2x = 10      (ii) 2x + y = 10      (iii) 2x + y − z = 10 

S

 
Fig. 1.1 

S

 
Fig. 1.2 

Solution (i) 2x = 10   ⇒  x = 5 
Solution (ii) 2x + y = 10 
 We have to determine the values 
of two unknown from a single 
equation. To find the solution we can 
assign arbitrary value to x and solve 
for y, or, choose an arbitrary value to y 
and solve for x.  
 Suppose we assign x an arbitrary 
value k, we obtain  
 x = k and y = (10 − 2k) 
These formulae give the solution set 
interms of the parameter ‘k’. Particular 
numerical solution can be obtained by 
substituting values for ‘k’.  For 

example when k = 1, 2, 5, − 3, 
1
2 , we 

get  (1, 8),  (2, 6), (5, 0), (− 3, 16) 

and 



1

2 , 9  as the respective solutions. 

Solution (iii) 2x + y − z = 10 

��������������������������
��������������������������
��������������������������
��������������������������

Y

X

Z

S

O

 
Fig. 1.3 

    In this case, we have to determine three unknowns x, y and z from a single 
equation. We can assign arbitrary values to any two variables and solve for the 
third variable. We assign arbitrary values ‘s’ and ‘t’ to x and y respectively, and 
solve for z. 
    We get x = s, y = t and z = 2s + t − 10 is the solution set. 
    For different values of s and t we get different solutions. 
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1.5.2 Cramer’s Rule Method : (Determinant Method) 
 Gabriel Cramer (1704 – 1752), a Swiss mathematician wrote on 
philosophy of law and government, and history of mathematics. He served in a 
public office, participated in artillery and fortifications activity for the 
government instructed workers on techniques of cathedral repair and undertook 
excavations of cathedral archives. Cramer, a bachelor, received numerous 
honours for his achievements. 
 His theorem provides a useful formula for the solution of certain linear 
system of n equations in n unknowns. This formula, known as Cramer’s Rule, is 
of marginal interest for computational purposes, but it is useful for studying the 
mathematical properties of a solution without actually solving the system. 
 Theorem 1.1 (without proof) : Cramer’s Rule : If AX = B is a system of  
n linear equations in n unknowns such that det(A) ≠ 0, then the system has a 
unique solution. This solution is  

 x1 = 
det (A1)

det A  ,   x2 = 
det (A2)
det (A) ,  …  xn = 

det (An)
det (A)   

 Where Aj is the matrix obtained by replacing the entries in the jth column 

of A by the entries in the matrix. B =  









 b1

 b2

 …
bn 

   

Cramer’s Rule for Non homogeneous equations of 2 unknowns : 
 Let us start with the system of two linear equations in two unknowns  
‘x’ and ‘y’. 
  a11x + a12y = b1 … (i) 

  a21x + a22y = b2 … (ii) 

  Let    ∆ = 






a11   a12

a21   a22
 

  ∴  x . ∆  = x   






a11   a12

a21   a22
 =  







a11x   a12

a21x   a22
 

   = 






b1 − a12y     a12

b2 − a22y     a22
  (by equation (i) and (ii)) 



 22

   = 






b1   a12

b2   a22
 − y 







a12   a12

a22   a22
 (by properties of determinants) 

   = 






b1   a12

b2   a22
 − y . 0  (by properties of determinants) 

  x . ∆ = 






b1   a12

b2   a22
  = ∆x  (say) 

Similarly y. ∆ = 






a11   b1

a21   b2
  =  ∆y (say) 

 ∆x, ∆y are the determinants which can also be obtained by replacing 1st and 
2nd column respectively by the column of constants containing b1 and b2 i.e. by 







b1

b2
  Thus, we have, x∆ = ∆x  ⇒   x = 

∆x

∆   

                           y∆ = ∆y  ⇒ y = 
∆y

∆    provided ∆ ≠ 0 

 Since ∆, ∆x, ∆y are unique, there exists a unique solution for the above 

system of equations. i.e., the system is consistent and has a unique solution. 

 The method stated above to solve the system of equation is known as 
Cramer’s Rule. 

 Cramer’s rule is applicable when ∆ ≠ 0. 

If ∆ = 0, then the given system may be consistent or inconsistent. 

Case 1 : If ∆ = 0 and ∆x = 0, ∆y = 0 and atleast one of the coefficients  
a11, a12, a21, a22 is non-zero, then the system is consistent and has infinitely 

many solutions. 

Case 2 : If ∆ = 0 and atleast one of the values ∆x, ∆y is non-zero, then the 

system is inconsistent i.e. it has no solution. 

 To illustrate the possibilities that can occur in solving systems of linear 
equations with two unknowns, consider the following three examples.  Solve : 

 (1) x + 2y = 3 (2) x + 2y = 3 (3) x + 2y = 3 

  x + y = 2  2x + 4y = 6  2x + 4y = 8 
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Solution (1) : 

We have ∆ = 



1   2

1   1
  =  − 1 

  ∆x = 



3   2

2   1
  =  − 1 

  ∆y = 



1   3

1   2
  =  − 1 

Unique solution 
Y

X

X+Y = 2

X+2Y = 3

S

O

 
Fig. 1.4 

 Since ∆ ≠ 0, the system has unique solution. By Cramer’s rule 

 x = 
∆x
∆   = 1  ;   y = 

∆y
∆   =  1      ∴ (x, y) = (1, 1) 

Solution (2) : 

We have ∆ = 



1   2

2   4
  =  0 

  ∆x = 



3   2

6   4
  =  0 

  ∆y = 



1   3

2   6
  =  0 

Infinitely many solution 
Y

X

X + 2Y = 3
2X + 4Y = 6

o

S

 
Fig. 1.5 

 Since ∆ = 0 and ∆x = 0, ∆y = 0 and atleast one of a11, a12, a21, a22 is non zero, 
it has infinitely (case 1) many solutions. The above system is reduced to a 
single equation x + 2y = 3. To solve this equation, assign y = k 
 ∴ x = 3 − 2y = 3 − 2k 
 The solution is x = 3 − 2k, y = k   ;    k ∈ R 
    For different value of k we get different solution. In particular (1, 1), (− 1, 2),  
(5 − 1) and (8, − 2.5) are some solutions for k = 1, 2, − 1 and − 2.5 respectively 
Solution (3) : 

∆ = 



1   2

2   4
  =  0  ;    

∆x = 



3   2

8   4
=  − 4  ;  ∆y = 



1   3

2   8
 = 2 

 Since ∆ = 0 and ∆x ≠ 0, ∆y ≠ 0 
(case 2 :  atleast one of the value of 
∆x, ∆y,  non-zero), the system is 
inconsistent.  

No Solution 
Y

X

X + 2Y = 3
2X + 4Y = 8

o

 
Fig. 1.6 

 i.e. it has no solution. 
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1.5.3  Non homogeneous equations of three unknowns : 

 Consider the system of linear equations 

 a11x + a12y + a13z = b1 ; a21x + a22y + a23z = b2 ; a31x + a32y + a33z = b3 

 Let us define ∆, ∆x, ∆y and ∆z as already defined for two unknowns. 

 ∆ = 







a11    a12    a13

a21    a22    a23

a31    a32    a33

 ,   ∆x = 







b1    a12    a13

b2    a22    a23

b3    a32    a33

 

 ∆y = 







a11    b1    a13

a21    b2    a23

a31    b3    a33

 ,     ∆z =   







a11    a12    b1

a21    a22    b2

a31    a32    b3

 

 As we discussed earlier for two variables, we give the following rule for 
testing the consistency of the above system. 

Case 1 : If ∆ ≠ 0, then the system is consistent, and has a unique solution. Using 
Cramer’s Rule can solve this system. 

Case 2 : If ∆ = 0, we have three important possibilities. 

 Subcase 2(a) :  If ∆ = 0 and atleast one of the values of ∆x, ∆y and ∆z is 

non-zero, then the system has no solution i.e. Equations are inconsistent. 

 Subcase 2(b) : If ∆ = 0 and ∆x = ∆y = ∆z = 0 and atleast one of the 2 × 2 

minor of ∆ is non zero, then the system is consistent and has infinitely many 
solution. In this case, the system of three equations is reduced to two equations. 
It can be solved by taking two suitable equations and assigning an arbitrary 
value to one of the three unknowns and then solve for the other two unknowns. 

 Subcase 2(c) : If ∆ = 0 and ∆x = ∆y = ∆z = 0 and all their (2 × 2) minors  

are zero but atleast one of the elements of ∆ is non zero (aij≠ 0) then the system 

is consistent and it has infinitely many solution. In this case, system is reduced 
to a single equation. To solve we can assign arbitrary values to any two 
variables and can determine the value of third variable. 

 Subcase 2(d) : If ∆ = 0, ∆x = ∆y = ∆z = 0, all 2 × 2 minors  of ∆ = 0 and 

atleast one  2 × 2 minor of ∆x or ∆y or ∆z is non zero then the system is 

inconsistent. 
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Theorem 1.2  (without proof) : 
 If a non-homogeneous system of linear equations with more number of 
unknowns than the number of equations is consistent, then it has infinitely 
many solutions. 
 To illustrate the different possibilities when we solve the above type of 
system of equations, consider the following examples. 
 (1) 2x + y + z = 5 (2) x + 2y + 3z = 6 
  x + y + z = 4  x + y + z = 3 
  x − y + 2z = 1  2x + 3y + 4z = 9 
 (3) x + 2y + 3z = 6 (4) x + 2y + 3z = 6 
  2x + 4y + 6z = 12  x + y + z = 3 
  3x + 6y + 9z = 18  2x + 3y + 4z = 10 
 (5) x + 2y + 3z = 6 
  2x + 4y + 6z = 12 
  3x + 6y + 9z = 24 
Solution (1) : 
  2x + y + z = 5  ;   x + y + z = 4  ;    x − y + 2z = 1 
We have 

 ∆ = 








2    1    1

1    1    1

1   − 1   2
   = 3 

∆x = 








5    1    1

4    1    1

1   − 1   2
  = 3 

Unique solution 

 
Fig. 1.7 

 ∆y = 








2   5   1

1   4   1
1   1   2

  = 6    ;           ∆z = 








2    1    5

1    1    4

1   − 1   1
  = 3 

 ∆ = 3, ∆x = 3, ∆y = 6, ∆z = 3 

 ‡ ∆ ≠ 0, The system has unique solution. By Cramer’s rule. 

 x = 
∆x

∆  = 
3
3  = 1,     y = 

∆y

∆   = 
6
3   =  2,     z = 

∆z
∆   = 1 

 ∴ The solution is x = 1,  y = 2,  z = 1 
  (x, y, z) = (1, 2, 1) 
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Solution (2) : 
 x + 2y + 3z = 6  ;   x + y + z = 3  ;  2x + 3y + 4z = 9 

 ∆ = 








1   2   3

1   1   1
2   3   4

   = 0   ;       ∆x = 








6   2   3

3   1   1
9   3   4

  = 0   

 ∆y = 








1   6   3

1   3   1
2   9   4

  = 0     ;       ∆z = 








1   2   6

1   1   3
2   3   9

  = 0  

 Since ∆ = 0 and ∆x = ∆y = ∆z = 0 but atleast one of the 2 × 2 minors of ∆ is 

non-zero 



 



1   2

1   1
 ≠ 0 , the system is consistent (by case 2(b)) and has 

infinitely many solution. 

 The system is reduced to 2 equations. ∴ Assigning an arbitrary value to 
one of unknowns, say z = k, and taking first two equations.  

 We get  x + 2y + 3k = 6 
  x + y + k = 3 
 i.e., x + 2y = 6 − 3k 
  x + y = 3 − k 

  ∆ = 



1   2

1   1
 = − 1 

Infinitely many solution 

 
Fig. 1.8 

  ∆x = 




6 − 3k   2

3 − k    1
 = 6 − 3k − 6 + 2k = − k 

  ∆y = 




1   6 − 3k

1    3 − k
 = 3 − k − 6 + 3k = 2k − 3 

  x = 
∆x

∆   =  
− k
− 1

   =  k 

  y = 
∆y

∆   =  
2k − 3

− 1
 = 3 − 2k 

The solution is  x = k, y = 3 − 2k and z = k 
 i.e.  (x, y, z) = (k, 3 − 2k, k).   k ∈ R 
 Particularly, for k = 1, 2, 3, 4 we get 
 (1, 1, 1), (2, − 1, 2), (3, − 3, 3), (4, − 5, 4) respectively as solution. 
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Solution (3) : 

 x + 2y + 3z = 6  ;   2x + 4y + 6z = 12  ;    3x + 6y + 9z = 18 

 ∆ = 








1   2   3

2   4   6
3   6   9

  = 0     ;    ∆x = 








6    2   3

12   4   6
18   6   9

  = 0  

 ∆y = 








1    6    3

2   12   6
3   18   9

  = 0    ;   ∆z = 








1   2    6

2   4   12
3   6   18

  = 0              

 Here ∆ = 0 and ∆x = ∆y = ∆z = 0. 

 Also all their 2 × 2 minors are zero, but atleast one of aij of ∆ is non- zero. 

 ∴ It has infinitely many solution (by 
case 2(c)). The system given above is 
reduced to one equation i.e. x + 2y + 3z = 6 

 Assigning arbitrary values to two of the 
three unknowns say y = s, z = t 

 We get x = 6 − 2y − 3z  =  6 − 2s − 3t 

Infinitely many solution 

 
Fig. 1.9 

 ∴ The solution is x = 6 − 2s − 3t,   y = s,  z = t 

 i.e.   (x, y, z) = (6 − 2s − 3t, s, t)   s, t ∈ R 

 For different value s, t we get different solution. 

Solution (4) : 

 x + 2y + 3z = 6  ;     x + y + z = 3  ;      2x + 3y + 4z = 10 

 ∆ = 








1   2   3

1   1   1
2   3   4

  = 0 

 ∆x = 








6    2   3

3    1   1
10   3   4

   = − 1 

No Solution 

 
Fig. 1.10 

 Since ∆ = 0, ∆x ≠ 0 (atleast one of the values of ∆x, ∆y, ∆z non-zero) The 

system is inconsistent (by case 2(a)).  

 ∴ It has no solution. 
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Solution (5) : 

 x + 2y + 3z = 6  ;       2x + 4y + 6z = 12  ;     3x + 6y + 9z = 24 

 ∆ = 








1   2   3

2   4   6
3   6   9

  = 0   ;        ∆x = 








6    2   3

12   4   6
24   6   9

  = 0 

 ∆y = 








1    6    3

2   12   6
3   24   9

  = 0   ;     ∆z = 








1   2    6

2   4   12
3   6   24

  = 0  

Here ∆ = 0 and ∆x = ∆y = ∆z = 0. 

 All the 2 × 2 minors of ∆ are 
zero, but we see that atleast one of 
the 2 × 2 minors of ∆x or ∆y or ∆z is 

non zero. i.e.  

    



 



12   4

24   6
 ≠ 0    minor of 3 in ∆x    

 ∴ by case 2(d), the system is 
inconsistent and it has no solution. 

No solution 
 

 
 

Fig. 1.11 

Example 1.17 : Solve the following system of linear equations by determinant 
method. 

 (1) x + y = 3, (2) 2x + 3y = 8, (3) x − y = 2, 

  2x + 3y = 7  4x + 6y = 16  3y = 3x − 7  

Solution (1) : x + y = 3  ;   2x + 3y = 7 

  ∆ = 



1   1

2   3
 = 3 − 2 = 1,  ;   ‡ ∆ ≠ 0  It has unique solution 

  ∆x = 



3   1

7   3
 = 9 − 7 = 2  ;  ∆y = 



1   3

2   7
  = 7 − 6 = 1 

  ∆ = 1,    ∆x  =  2,    ∆y  =  1 

 ∴ By Cramer’s rule 

  x = 
∆x

∆  =  
2
1  = 2    ;   y  =  

∆y

∆   =  
1
1   =  1 

 solution is (x, y) = (2, 1) 
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Solution (2)  : 2x + 3y = 8  ;   4x + 6y = 16  

  ∆ = 



2   3

4   6
 = 12 − 12 = 0 

  ∆x = 



8    3

16   6
 = 48 − 48 = 0 

  ∆y = 



2    8

4   16
 = 32 − 32 = 0 

 Since ∆ = 0, and ∆x = ∆y = 0 and atleast one of the coefficients aij of ∆ ≠ 0, 

the system is consistent and has infinitely many solutions. 

 All 2 × 2 minor are zero and atleast (1 × 1) minor is non zero. The system 
is reduced to a single equation. We assign arbitrary value to x (or y) and solve 
for y (or x). 

 Suppose we assign x = t, from equation (1) 

 we get y = 
1
3 (8 − 2t). 

 ∴The solution set is  (x, y) = 



t, 

8 − 2t
3  ,   t ∈ R 

 In particular (x, y) = (1, 2) for t = 1 

  (x, y) = (− 2, 4)  for t = − 2 

  (x, y) = 



− 

1
2 , 3   for t = − 

1
2  

Solution  (3) : x − y = 2 ; 3y = 3x − 7   

  ∆ = 






1   − 1

3   − 3
 = 0,      

  ∆x = 






2   − 1

7   − 3
 = 1 

 Since ∆ = 0 and ∆x ≠ 0 (atleast one of the values ∆x or ∆y ≠ 0) 

 the system is inconsistent. ∴  It has no solution. 

Example 1.18 : Solve the following non-homogeneous equations of three 
unknowns. 
 (1) x + 2y + z = 7 (2) x + y + 2z = 6 (3) 2x + 2y + z = 5 
  2x − y + 2z = 4  3x + y − z = 2  x − y + z = 1 
  x + y − 2z = − 1  4x + 2y + z = 8  3x + y + 2z = 4 
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 (4) x + y + 2z = 4 (5) x + y + 2z = 4 
  2x + 2y + 4z = 8  2x + 2y + 4z = 8 
  3x + 3y + 6z = 12  3x + 3y + 6z = 10 

Solution (1) :  x + 2y + z = 7,       2x − y + 2z = 4,        x + y − 2z = − 1 

  ∆ = 







1    2    1

2   − 1    2

1    1    − 2

 = 15             ∴ ∆ ≠ 0 it has unique solution. 

  ∆x = 







7    2    1

4    − 1    2

− 1    1    − 2

 = 15       ;   ∆y =  









1   7    1

2   4    2

1− 1   − 2

 = 30 

  ∆z = 







1    2    7

2   − 1    4

1    1    − 1

 = 30 

 ∆ = 15,    ∆x = 15,    ∆y = 30,    ∆z = 30 

 By Cramer’s rule 

 x = 
∆x

∆   =  1,     y = 
∆y

∆  = 2,    z = 
∆z

∆  = 2 

 Solution is (x, y, z) = (1, 2, 2) 
Solution (2) : x + y + 2z = 6,       3x + y − z = 2,       4x + 2y + z = 8 

  ∆ = 









1   1    2

3   1   − 1

4   2    1

 = 0,     ∆x = 









6   1    2

2   1   − 1

8   2    1

 = 0, 

  ∆y = 









1   6    2

3   2   − 1

4   8    1

 = 0,     ∆z = 









1   1   6

3   1   2

4   2   8

 = 0 

 Since ∆ = 0 and ∆x = ∆y = ∆z = 0, also atleast one of the (2 × 2) minors of 

∆  is not zero, the system is consistent and has infinitely many solution. 
 Take two suitable equations and assign arbitrary value to one of the three 
unknowns. We solve for the other two unknowns. 
Let z = k ∈ R 
 ∴ equation (1) and (2) becomes 
  x + y =6 − 2k 
  3x + y = 2 + k 
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  ∆ = 



1   1

3   1
 = 1 − 3 = − 2 

  ∆x = 






6 − 2k   1

2 + k    1
 = 6 − 2k − 2 − k = 4 − 3k 

  ∆y = 






1   6 − 2k

3    2 + k
 = 2 + k − 18 + 6k = 7k − 16 

 ∴ By Cramer’s rule 

  x = 
∆x

∆   =  
4 − 3k

− 2
  =  

1
2 (3k − 4) 

  y = 
∆y

∆   =  
7k − 16

− 2
   =  

1
2  (16 − 7k) 

 ∴ The solution set is 

  (x, y, z) = 



3k − 4

2 ,  
16 − 7k

2  ,  k          k ∈ R 

 Particular Numerical solutions for k = − 2 and 2 are  

 (− 5, 15, − 2) and (1, 1, 2) respectively 

Solution (3) : 2x + 2y + z = 5,       x − y + z = 1,         3x + y + 2z = 4 

  ∆ = 









2    2    1

1   − 1   1

3    1    2

  = 0      ;    ∆x  =  









5    2    1

1   − 1   1

4    1    2

  ≠ 0 

 Since ∆ = 0 and ∆x ≠ 0 (atleast one of the values of ∆x, ∆y, ∆z non zero) the 

system is inconsistent.  i.e. it has no solution. 

Solution (4) :  x + y + 2z = 4,      2x + 2y + 4z = 8,        3x + 3y + 6z = 12 

  ∆ = 









1   1   2

2   2   4

3   3   6

 = 0       ∆x = 









4    1   2

8    2   4

12   3   6

 = 0 

  ∆y = 









1    4    2

2    8    4

3   12   6

 = 0,     ∆z = 









1   1    4

2   2    8

3   3   12

 = 0 
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 Since ∆ = 0 and ∆x = ∆y = ∆z = 0 also all 2 × 2 minors of ∆, ∆x, ∆y and ∆z 
are zero, by case 2(c), it is consistent and has infinitely many solutions. (‡ all  
2 × 2 minors zero and atleast one of aij of ∆ ≠ 0, the system is reduced to single 

equation). 

 Let us take x = s and y = t, we get from equation (1) 

 z = 
1
2  (4 − s − t)  ∴  the solution set is  

  (x, y, z) = 



s,  t,  

4 − s − t
2 ,   s, t ∈ R 

 Particular numerical solution for 

  (x, y, z) = (1, 1, 1) when s = t = 1 

  (x, y, z) = 



− 1,  2,  

3
2  when s = − 1, t = 2 

Solution (5) :  x + y + 2z = 4,        2x + 2y + 4z = 8,      3x + 3y + 6z = 10 

  ∆ = 









1   1   2

2   2   4

3   3   6

 = 0       ∆y = 









1    4    2

2    8    4

3   10   6

 = 0 

  ∆x = 









4    1   2

8    2   4

10   3   6

 = 0,     ∆z = 









1   1    4

2   2    8

3   3   10

 = 0 

 ∆ = 0 and ∆x = ∆y = ∆z = 0. Also all 2 × 2 minors of ∆ = 0, but not all the 

minors of ∆x, ∆y and ∆z are zero. 

 Therefore the system is inconsistent. i.e. it has no solution. 

Example 1.19 : A bag contains 3 types of coins namely Re. 1, Rs. 2 and Rs. 5. 
There are 30 coins amounting to Rs. 100 in total. Find the number of coins in 
each category. 

Solution : 
 Let x, y and z be the number of coins respectively in each category Re. 1, 
Rs. 2 and Rs. 5. From the given information 
  x + y + z = 30   (i) 
  x + 2y + 5z = 100 (ii) 
 Here we have 3 unknowns but 2 equations. We assign arbitrary value k to z 
and solve for x and y. 
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 (i) and (ii) become 

  x + y = 30 − k   

  x + 2y  = 100 − 5k k ∈ R 

 ∆=



1   1

1   2
 = 1,  ∆x = 







30 − k    1

100 − 5k   2
 = 3k − 40,   ∆y = 







1    30 − k

1   100 − 5k
= 70 − 4k 

 By Cramer’s Rule 

 x  =  
∆x

∆  = 3k − 40,      y = 
∆y

∆  = 70 − 4k 

 The solution is (x, y, z)  =  (3 k − 40, 70 − 4k, k)   k ∈ R. 

 Since the number of coins is a non-negative integer, k = 0, 1, 2 … 

 Morever 3k − 40 ≥ 0,    and 70 − 4k ≥ 0   ⇒   14 ≤ k ≤ 17 

  ∴ The possible solutions are (2, 14, 14), (5, 10, 15), (8, 6, 16) and (11, 2, 17) 

1.5.4 Homogeneous linear system : 

 A system of linear equations is said to be homogeneous if the constant 
terms are all zero; that is, the system has the form 

 a11 x1 + a12 x2 + ………… + a1n xn = 0 

 a21 x1 + a22 x2 +  ………… + a2n xn = 0 

 …………………………………………. 

 …………………………………………. 

 am1x1 +  am2 x2 + ……….. + amn xn = 0 

 Every homogeneous system of linear equations is always consistent, since 
all such systems have x1 = 0, x2 = 0 …… xn = 0 as a solution. This solution is 

called trivial solution. If there are other solution they are called non trivial 
solutions. Because a homogeneous linear system always has the trivial solution, 
there are only two possibilities. 

 (i) (The system has only) the trivial solution 

 (ii) (The system has) infinitely many solutions in addition to the trivial 
solution. 
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 As an illustration, consider a 
homogeneous linear system of two 
equations in two unknowns. 

  x + y = 0 

  x − y = 0 

 the graph of these equations are lines 
through the origin and the trivial solution 
corresponding to the point of intersection 
at the origin. 

 
 
 
 
 
 
 
 
 

Fig. 1. 12 

 

 

 For the following system 

  x − y = 0 

  2x − 2y = 0 

 the graph shows, that the system has 
infinitely many solutions. 

 There is one case in which a 
homogeneous system is assured of having 
non-trivial solutions,  namely,   whenever  

 
 

Y

X

X + Y = 0
2X + 2Y = 0

O

 
Fig. 1.13 

the system involves more number of unknowns than the number of equations. 
Theorem 1.3 : (without proof) 

 A homogeneous system of linear equations with more number of 
unknowns than the number of equations has infinitely many solutions. 

Example 1.20 :  

Solve : x + y + 2z = 0 

 2x + y − z = 0 
 2x + 2y + z = 0 
Solution : 

 ∆ = 









1   1    2

2   1   − 1

2   2    1

 = 3 

 ‡ ∆ ≠ 0, the system has unique solution. 

 ∴ The above system of homogeneous equation has only trivial solution.  
i.e., (x, y, z) = (0, 0, 0). 

Y

X  − Y = 0

X + Y = 0

Xo

S

Y

X  − Y = 0

X + Y = 0

Xo

S
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Example 1.21 :  

Solve : x + y + 2z = 0 
 3x + 2y + z = 0 
 2x + y − z = 0 
Solution : 

 ∆ = 









1   1    2

3   2    1

2   1   − 1

 = 0   

 Since ∆ = 0, it has infinitely many solutions. Also atleast one 2 × 2 minors 
of ∆ ≠ 0, the system is reduced to 2 equations. 

 ∴ Assigning arbitrary value to one of the unknowns, say z = k and taking 
first and last equations. (Here we can take any two equations) 

 we get x + y = − 2k 
  2x + y = k 

 ∴ ∆ = 



1   1

2   1
 = − 1,      ∆x = 







− 2k   1

k    1
 = − 3k,       ∆y = 







1   − 2k

2    k
 = 5k  

 By Cramer’s Rule  

 x = 3k,    y = − 5k 

 ∴ Solution is (x, y, z) = (3k, − 5k,  k) 

EXERCISE 1.4 
Solve the following non-homogeneous system of linear equations by 
determinant method : 
  (1) 3x + 2y = 5 (2) 2x + 3y = 5 
   x + 3y = 4  4x + 6y = 12 

  (3) 4x + 5y = 9 (4) x + y + z = 4 
   8x + 10y = 18  x − y + z = 2 
     2x + y − z = 1 
  (5) 2x + y − z = 4 (6) 3x + y − z = 2 

   x + y − 2z = 0  2x − y + 2z = 6 

   3x + 2y − 3z = 4  2x + y − 2z = − 2 

  (7) x + 2y + z = 6 (8) 2x − y + z = 2 

   3x + 3y − z = 3  6x − 3y + 3z = 6 

   2x + y − 2z = −3  4x − 2y + 2z = 4 
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  (9) 
1
x + 

2
y − 

1
z = 1 ;   

2
x  + 

4
y + 

1
z = 5  ;    

3
x  − 

2
y − 

2
z = 0 

  (10) A small seminar hall can hold 100 chairs. Three different colours 
(red, blue and green) of chairs are available. The cost of a red chair 
is Rs.240, cost of a blue chair is Rs.260 and the cost of a green chair 
is Rs.300. The total cost of chair is Rs.25,000. Find atleast 3 
different solution of the number of chairs in each colour to be 
purchased. 

1.5.5 Rank method : 

 Let us consider a system of “m” linear algebraic equation, in “n” unknowns 
x1, x2, x3, … xn as in section 1.2. 

 The equations can be written in the form of matrix equation as  AX = B 

 Where the m × n matrix A is called the coefficient matrix. 

 A set of values x1, x2, x3 … xn which satisfy the above system of equations 

is called a solution of the system. 

 The system of equations is said to be consistent, if it has atleast one 
solution. A consistent system may have one or infinite number of solutions, 
when the system possesses only one solution then it is called a unique solution. 
The system of equations is said to be inconsistent if it has no solution. 

 The m × (n + 1) matrix. 

 









a11    a12    a13    …    a1n    b1

a21    a22    a23    …    a2n    b2

a31    a32    a33    …    a3n    b3

…    …    …    …    …     …
am1   am2   am3    …    amn   bm

 is called the augmented matrix of the 

system and it is denoted by [A, B]. The condition for the consistency of a 
system of simultaneous linear equations can be given interms of the coefficient 
and augmented matrices. 

 The system of simultaneous linear equations AX = B is consistent if and 
only if the matrices A and [A, B] are of the same rank. 
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 The solution of a given system of linear equations is not altered by 
interchanging any two equations or by multiplying any equation by a non-zero 
scalar or by adding a multiple of one equation to another equation. By applying 
elementary row operations to the augmented matrix the given system of 
equations can be reduced to an equivalent system and this reduced form is used 
to test for consistency and to find the solutions. 
Steps to be followed for testing consistency : 
 (i) Write down the given system of equations in the form of a matrix 

equation AX = B. 
 (ii) Find the augmented matrix [A, B] of the system of equations. 
 (iii) Find the rank of A and rank of [A, B] by applying only elementary row 

operations. Column operations should not be applied. 

 (iv) (a) If the rank of A ≠ rank of [A, B] then the system is inconsistent 
and has no solution. 

  (b) If the rank of A = rank of [A, B] = n, where n is the number of 
unknowns in the system then A is a non-singular matrix and the 
system is consistent and it has a unique solution. 

  (c) If the rank of A = rank of [A, B] < n, then also the system is 
consistent but has an infinite number of solutions. 

Example 1.22 : Verify whether the given system of equations is consistent. If it 
is consistent, solve them.  

 2x + 5y + 7z = 52, x + y + z = 9,      2x + y − z = 0 
Solution : The given system of equations is equivalent to the single matrix 
equation. 

  









2   5    7

1   1    1

2   1   − 1

  









 x

 y

 z 

 = 









 52

 9

 0 

 

  A X = B 

 The augmented matrix is  

  [A, B] = 









2   5    7    52

1   1    1    9

2   1   − 1    0
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1   1    1    9

2   5    7    52

2   1   − 1    0

 R1 ↔ R2 

   









1    1    1    9

0    3    5    34

0   − 1   − 3   − 18

  
R2   →   R2   −  2R1

R3   →   R3   −  2R1
 

    









1    1    1    9

0   − 1   − 3   − 18

0    3    5    34

  R2 ↔ R3 

   







1    1    1    9

0   − 1   − 3   − 18

0    0    − 4   − 20

  R3 → R3 + 3R2 

 The last equivalent matrix is in the echelon form. It has three non-zero 
rows. 

 ∴ ρ(A, B) = 3  

 Also A   







1    1    1

0   − 1   − 3

0    0    − 4

 

 Since there are three non-zero rows,  ρ(A) = 3 

 ρ(A) = ρ[A, B] = 3 = number of unknowns. 

 ∴ The given system is consistent and has a unique solution. 

 To find the solution, we see that the given system of equations is 
equivalent to the matrix equation. 

  







1    1    1

0   − 1   − 3

0    0    − 4

  









 x

 y

 z 

 = 







 9

 − 18

 − 20 

 

  x + y + z = 9 … (1) 

  − y − 3z = − 18 (2) 

  − 4z = − 20 … (3) 
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   (3) ⇒  z = 5  ; (2) ⇒ y =  18 − 3z = 3  ; (1) ⇒ x = 9 − y − z  ⇒ x = 9−3−5 = 1 
 ∴ Solution is x = 1,   y = 3,   z = 5 
Example 1.23 :  

Examine the consistency of the equations   
 2x − 3y + 7z = 5, 3x + y − 3z = 13,  2x + 19y − 47z = 32 
Solution :  
 The given system of equations can be written in the form of a matrix 
equation as 

  







2   − 3    7

3    1    − 3

2    19    − 47

  









 x

 y

 z 

 = 









 5

 13

 32 

 

  A X = B 
 The augmented matrix is  

  [A, B] = 







2   − 3    7    5

3    1    − 3    13

2    19    − 47   32

   









1   − 

3
2    

7
2    

5
2

3    1    − 3    13

2    19    − 47   32

 R1 → 
1
2  R1 

     







1   − 

3
2    

7
2    

5
2

0    
11
2    − 

27
2    

11
2

0    22    − 54   27

  
R2   →   R2   −  3R1

R3   →   R3   −  2R1
 

      







1   − 

3
2    

7
2    

5
2

0    
11
2    − 

27
2    

11
2

0    0    0    5

  R3 → R3 − 4R2 

 The last equivalent matrix is in the echelon form. It has three non-zero 
rows.  ∴ ρ[A, B] = 3 and ρ(A) = 2 
 ρ(A) ≠ ρ[A, B] 
 ∴ The given system is inconsistent and hence has no solution. 
Note : This problem can be solved by not dividing R1 by 2 also. i.e., R2 → 2R2 − 3R1 

Example 1.24 :  
Show that the equations x + y + z = 6, x + 2y + 3z = 14,  

x + 4y + 7z = 30 are consistent and solve them.   
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Solution :  The matrix equation corresponding to the given system is 

  









1   1   1

1   2   3

1   4   7

  









 x

 y

 z 

 = 









 6

 14

 30 

 

  A X = B 
 The augmented matrix is  

  [A, B] = 









1   1   1    6

1   2   3   14

1   4   7   30

  

     









1   1   1    6

0   1   2    8

0   3   6   24

  
R2   →   R2   −  R1

R3   →   R3   −  R1
 

      









1   1   1   6

0   1   2   8

0   0   0   0

  R3 → R3 − 3R2 

 In the last equivalent matrix, there are two non-zero rows.  
 ∴ ρ(A, B) = 2 and ρ(A) = 2 
  ρ(A) = ρ(A, B) 
 ∴ The given system is consistent. But the value of the common rank is less 
than the number of unknowns. The given system has an infinite number of 
solutions. 
 The given system is equivalent to the matrix equation 

  









1   1   1

0   1   2

0   0   0

  









 x

 y

 z 

 = 









6

  8

  0

 

  x + y + z = 6 … (1) 
  y + 2z = 8 … (2) 
   (2) ⇒  y = 8 − 2z ; (1) ⇒ x = 6 − y − z = 6  − (8 − 2z) − z = z − 2 
 Taking z = k, we get  x = k − 2,    y = 8 − 2k ;  k ∈ R 
 Putting k = 1, we have one solution as x = − 1, y = 6, z = 1. Thus by giving 
different values for k we get different solutions. Hence the given system has 
infinite number of solutions. 
Example 1.25 :  

Verify whether the given system of equations is consistent. If it is 
consistent, solve them : 
 x− y + z = 5,      − x + y − z = − 5,      2x − 2y + 2z = 10 
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Solution : The matrix equation corresponding to the given system is 

  







1    − 1    1

− 1    1    − 1

2    − 2    2

  









 x

 y

 z 

 = 









 5

 −5

 10 

 

  A X = B 

 The augmented matrix is  

  [A, B] = 







1    − 1    1    5

− 1    1    − 1   − 5

2    − 2    2    10

  

     









1   − 1   1   5

0    0    0   0

0    0    0   0

  
R2   →   R2   +  R1

R3   →   R3   −  2R1
 

 In the last equivalent matrix, there is only one non-zero row  

 ∴ ρ[A, B] = 1 and  ρ(A) = 1 

 Thus ρ(A) = ρ[A, B] = 1. ∴ the given system is consistent. Since the 
common value of the rank is less than the number of unknowns, there are 
infinitely many solutions. The given system is equivalent to the matrix 
equation. 

  









1   − 1 1

0    0    0

0    0    0

  









 x

 y

 z 

 = 









5

0

0

 

 x − y + z = 5 ; Taking y = k1, z = k2, we have x = 5 + k1 − k2. for various 

values of k1 and k2 we have infinitely many solutions. k1, k2 ∈ R 

Example 1.26 : Investigate for what values of λ, µ the simultaneous equations x 
+ y + z = 6,   x + 2y + 3z = 10,  x + 2y + λz = µ have (i) no solution  (ii) a unique 
solution and (iii) an infinite number of solutions. 
Solution :  
 The matrix equations corresponding to the given system is 

  









1   1   1

1   2   3

1   2   λ
  









 x

 y

 z 

 = 









 6

 10

 µ 

 

  A X = B 
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 The augmented matrix is  

  [A, B] = 









1   1   1    6

1   2   3   10

1   2   λ    µ
  

     









1   1    1    6

0   1    2    4

0   0   λ−3   µ−10

  
R2   →   R2   −  R1

R3   →   R3   −  R2
 

Case (i) : λ − 3 = 0 and µ − 10 ≠ 0   i.e. λ = 3 and µ ≠ 10. 

 In this case  ρ(A) = 2 while ρ[A, B] = 3  ∴ ρ(A) ≠ ρ[A, B] 

 ∴ The given system is inconsistent and has no solution. 

Case (ii) : λ − 3 ≠ 0  i.e.,  λ ≠ 3 and µ can take any value in R. 

 In this case   ρ(A) = 3  and ρ[A, B] = 3 

  ρ(A) = ρ[A, B] = 3 = number of unknowns. 

 ∴ The given system is consistent and has a unique solution. 

Case (iii) : 

 λ − 3 = 0 and µ − 10 = 0  i.e.,  λ = 3 and µ = 10 

 In this case  ρ(A) = ρ[A, B] = 2 < number of unknowns. 

 ∴  The given system is consistent but has an infinite number of solutions. 
1.5.6 Homogeneous linear Equations : 
 A system of homogeneous linear equations is given by 
 a11 x1 + a12 x2 + a13 x3 + ……...……+ a1n xn = 0 

 a21 x1 + a22 x2 + a23 x3 +  …………. + a2n xn = 0 

 …………………………………………………… 

 …………………………………………………… 

 am1x1 +  am2 x2 + am3 x3 + …………… + amn xn = 0 

 and the corresponding augmented matrix is  

 [A, B] =  









a11    a12   …    a1n    0

a21    a22   …    a2n    0

…    …    …    …    …

…    …    …    …    …

am1   am2   …   amn    0

  = [A, O] 
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 Since rank of A = rank of [A, O] is always true, we see that the system of 
homogeneous equations is always consistent.  

 Note that x1 = 0, x2 = 0, x3 = 0 … xn = 0 is always a solution of the system. 

This solution is called a trivial solution. If the rank of A = rank of  
[A, B] < n then the system has non trivial solutions including trivial solution. If 
ρ(A) = n then the system has only trivial solution.  
Example 1.27 : Solve the following homogeneous linear equations.  

x + 2y − 5z = 0,   3x + 4y + 6z = 0,    x + y + z = 0 

Solution : The given system of equations can be written in the form of matrix equation 

  









1   2   − 5

3   4    6

1   1    1

  









 x

 y

 z 

 = 









 0

 0

 0 

 

  A X = B 

 The augmented matrix is  

  [A, B] = 









1    2    − 5    0

3    4     6     0

1    1     1     0

  

     







1     2     − 5    0

0    − 2     21     0

0    − 1     6     0

  
R2   →   R2   − 3R1

R3   →   R3   −   R1
 

     







1     2     − 5    0

0    − 1     6     0

0    − 2     21     0

  R2 ↔ R3 

     







1     2     − 5    0

0    − 1     6     0

0     0     9     0

  R3 → R3 −  2R2 

 This is in the echelon form. 

 Clearly ρ[A, B] = 3. and. ρ(A) = 3 

  ∴ ρ(A) = ρ[A, B] = 3 = number of unknowns. 

 ∴ The given system of equations is consistent and has a unique solution. 
i.e., trivial solution. 

  ∴  x = 0,   y = 0  and z = 0 
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Note : Since ρ(A) = 3, | A | ≠ 0  i.e. A is non-singular ;  
 ∴ The given system has only trivial solution x = 0, y = 0, z = 0 
Example 1.28 : For what value of µ the equations  

x + y + 3z = 0,     4x + 3y + µz = 0,    2x + y + 2z = 0  have a (i) trivial 
solution,   (ii) non-trivial solution. 
Solution : The system of equations can be written as AX = B 

  









1   1   3

4   3   µ

2   1   2

  









 x

 y

 z 

 = 









 0

 0

 0 

 

  [A, B] = 









1    1   3   0

4    3    µ   0

2    1    2   0

  

     







1    1    3    0

0   − 1   µ−12   0

0 − 1    − 4    0

  
R2   →   R2   −  4R1

R3   →   R3   −  2R1
 

     







1    1    3    0

0   − 1   µ−12   0

0    0    8−µ    0

  R3 → R3 −  R2 

Case (i) : If µ ≠ 8 then 8 − µ ≠ 0 and hence there are three non-zero rows. 
 ∴  ρ[A] = ρ[A, B] = 3 = the number of unknowns. 
 ∴ The system has the trivial solution x = 0,   y = 0,   z = 0 

Case (ii) : 

 If µ = 8  then. 

 ρ[A, B] = 2 and ρ(A) = 2 

 ∴ ρ(A) = ρ[A, B] = 2 < number of unknowns. 

 The  given system is equivalent to  

  x + y + 3z = 0  ;    y + 4z = 0 

  ∴  y = − 4z  ;       x = z 
 Taking  z = k, we get x = k, y = − 4k, z = k    [ ]k ∈ R − {0}  

 which are non-trivial solutions.    

 Thus the system is consistent and has infinitely many non-trivial solutions. 

Note : In case (ii) the system also has trivial solution. For only non-trivial 
solutions we removed k = 0. 
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EXERCISE 1.5 
  (1) Examine the consistency of the following system of equations. If it is 

consistent then solve the same. 
  (i) 4x + 3y + 6z = 25 x + 5y + 7z = 13 2x + 9y + z = 1 
  (ii) x − 3y − 8z = − 10 3x + y − 4z = 0 2x + 5y + 6z − 13 = 0 
  (iii) x + y + z = 7 x + 2y + 3z = 18 y + 2z = 6 
  (iv) x − 4y + 7z = 14 3x + 8y − 2z = 13 7x − 8y + 26z = 5 
  (v) x + y − z = 1 2x + 2y − 2z = 2 − 3x − 3y + 3z = − 3 
 (2) Discuss the solutions of the system of equations for all values of λ. 
  x + y + z = 2,  2x + y −2z = 2, λx + y + 4z = 2 
 (3) For what values of k, the system of equations  
  kx + y + z = 1, x + ky + z = 1, x + y + kz = 1 have 
  (i) unique solution    (ii) more than one solution  (iii) no solution 
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2. VECTOR ALGEBRA 

2.1 Introduction : 
 We have already studied two operations ‘addition’ and ‘subtraction’ on 
vectors in class XI. In this chapter we will study the notion of another operation, 
namely product of two vectors. The product of two vectors results in two 
different ways, viz., a scalar product and a vector product. Before defining these 
products we shall define the angle between two vectors. 

2.2 Angle between two vectors : 

 Let two vectors a
→

 and b
→

 be represented by OA
→

 and OB
→

 respectively. Then 

the angle between a
→

 and b
→

  is the angle between their directions when these 
directions both converge or both diverge from their point of intersection. 

 
 
 
 
 

Fig. 2. 1 

 
 
 
 
 
 

Fig. 2. 2 

 It is evident that if θ is the numerical measure of the angle between two 
vectors, then 0 ≤ θ ≤ π. 

2.3  The Scalar product or Dot product 

 Let a
→

 and b
→

 be two non zero vectors inclined at an angle θ. Then the 

scalar product of a
→

 and b
→

  is denoted by a
→

 . b
→

 and is defined as the scalar  

| |a
→

 | |b
→

cos θ. 

   Thus a
→

 . b
→

  = | |a
→

 | |b
→

 cos θ = ab cos θ 

Note :  Clearly the scalar product of two vectors is a scalar quantity. Therefore 

the product is called scalar product. Since we are putting dot between a
→

 and  

b
→

,  it is also called dot product. 

O
A

B

a

b

O
A

B

a

b

a

b

θ

aa

bb

θ
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Geometrical Interpretation of Scalar Product 

 Let OA
→

 = a
→

,  OB
→

 = b
→

 

 Let θ be the angle between a
→

 and b
→

 
. From B draw BL ⊥r to OA.  

OL is called the projection of b
→

 on a
→

. 

 From ∆OLB, cos θ = 
OL
OB 

 
 
 
 
 
 
 

Fig. 2.3 

  ⇒  OL = (OB) (cos θ) 

   ⇒  OL = | |b
→

 (cos θ) … (1) 

 Now by definition a
→

 . b
→

 = | |a
→

 | |b
→

 cos θ 

    = | |a
→

 (OL) [‡ using (1)] 

   ∴ a
→

 . b
→

 = | |a
→

 [ ]projection of b
→

 on a
→

 

   Projection of b
→

 on a
→

 = 
a
→

 . b
→

| |a
→

 = 
a
→

| |a
→

 . b
→

 = a
∧

 . b
→

 

   Projection of a
→

 on b
→

  = 
a
→

 . b
→

| |b
→

 = a
→

 . 
b
→

| |b
→

  = a
→

 .  b
∧

 

2.3.1 Properties of Scalar Product : 
Property 1 :   
 The scalar product of two vectors is commutative  

 (i.e.,)    a
→

 . b
→

 = b
→

 . a
→

 for any two vectors  a
→

 and b
→

  
Proof :  

 Let a
→

 and b
→

 be two vectors and θ the angle between them. 

   a
→

 . b
→

 = | |a
→

 | |b
→

 cos θ … (1) 

   ∴ b
→

 . a
→

  =  | |b
→

 | |a
→

 cos θ 

a

b

θ

O L A

B

a

bb

θ

O L A

B
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   b
→

 . a
→

 = | |a
→

 | |b
→

 cos θ … (2) 

 From (1) and (2) 

   a
→

 . b
→

 = b
→

 . a
→

 
 Thus dot product is commutative. 
Property 2 : Scalar Product of Collinear Vectors : 

 (i) When the vectors a
→

 and b
→

 are collinear and are in the same 
direction, then θ = 0 

 Thus  a
→

 . b
→

 = | |a
→

 | |b
→

 cos θ = | |a
→

  | |b
→

 (1)  = ab … (1)  

 (ii) When the vectors a
→

 and b
→

 are collinear and are in the opposite 
direction, then θ = π 

 Thus 

   a
→

 . b
→

 = | |a
→

 | |b
→

 cos θ = | |a
→

 | |b
→

(cos π) … (1) 

    = | |a
→

 | |b
→

 (− 1) = − ab 
Property 3 : Sign of Dot Product 

 The dot product a
→

 . b
→

 may be positive or negative or zero. 
 (i) If the angle between the two vectors is acute (i.e., 0 < θ < 90°) then 

cos θ is positive. In this case dot product is positive. 
 (ii) If the angle between the two vectors is obtuse (i.e., 90 < θ < 180) then 

cos θ is negative. In this case dot product is negative. 
 (iii) If the angle between the two vectors is 90° (i.e., θ = 90°) then  

cos θ = cos 90° = 0. In this case dot product is zero. 

Note :  If a
→

 . b
→

 = 0, we have the following three possibilities  

 a
→

. b
→

 = 0   ⇒  | |a
→

 | |b
→

 cos θ = 0 

 (i) | |a
→

 = 0  (i.e.,) a
→

 is a zero vector and b
→

 any vector. 

 (ii) | |b
→

 = 0  (i.e.,) b
→

 is a zero vector and a
→

 any vector. 

 (iii) cos θ = 0  (i.e.,) θ = 90°  (i.e.,) a
→

 ⊥ b
→

 
Important Result : 

 Let a
→

 and b
→

 be two non-zero vectors, then  a
→

. b
→

 = 0  ⇔ a
→

 ⊥ b
→

 



 49

Property 4 : Dot product of equal vectors : 

   a
→

 . a
→

 = | |a
→

 | |a
→

 cos 0 = | |a
→

 | |a
→

 = | |a
→

2

 = a2 

Convention :  ( )a
→ 2

 = a
→

 . a
→

 = | |a
→

2

 = a
→2 = a2 

Property 5 :  

 (i) i
→

 . i
→

 = j
→

. j
→

 = k
→

 . k
→

 = 1 

 (ii)  i
→

 . j
→

 = j
→

 . i
→

 = j
→

 . k
→

 = k
→

 . j
→

 = k
→

 . i
→

 = i
→

 . k
→

 = 0 

   i
→

 . i
→

 = | |i
→

 | |i
→

 cos 0 = (1) (1) (1) = 1 

   i
→

 . j
→

 = | |i
→

 | |j
→

 cos 90 = (1) (1) (0) = 0 

Property 6 :  

 If m is any scalar and a
→

, b
→

 are any two vectors, then 

   ( )m a
→

 . b
→

 = m( )a
→

 . b
→

 = a
→

 . ( )m b
→

 

Property 7 :   

 If m, n are scalars and a
→

, b
→

 are two vectors then 

   m a
→

 . n b
→

 = mn( )a
→

 . b
→

 = ( )mn a
→

 . b
→

 = a
→

 . ( )mn b
→

 

Property 8 :   
 The scalar product is distributive over addition. 

 a
→

 . ( )b
→

 + c
→

 = a
→

 . b
→

 + a
→

 . c
→

,  for any three vectors a
→

, b
→

, c
→

 

Proof :  

 Let  OA
→

 = a
→

  

  OB
→

 = b
→

 

  BC
→

 = c
→

  

 Then  OC
→

 = OB
→

 + BC
→

  

   = b
→

 + c
→

 

 Draw BL ⊥ OA and CM ⊥ OA 

 
 
 
 
 
 
 

Fig. 2.4 

a

b

O L M A

C

B
c

b 
c+

aa

bb

O L M A

C

B
cc

b 
c+b b 
cc+
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  ∴ OL = Projection of b
→

 on a
→

 

      LM = Projection of c
→

 on a
→

 

      OM = Projection of ( )b
→

 + c
→

 on a
→

 

  We have a
→

 . b
→

 = | |a
→

 ( )Projection of b
→

 on a
→

 

  ⇒  a
→

 . b
→

 = | |a
→

 (OL) … (1) 

 Also  a
→

 . c
→

 = | |a
→

 ( )Projection of c
→

 on a
→

 

   ⇒  a
→

 . c
→

 = | |a
→

 (LM) … (2) 

 Now a
→

 .( )b
→

 + c
→

 = | |a
→

  Projection of ( )b
→

 + c
→

  on a
→

 

    = | |a
→

 (OM) = | |a
→

 (OL + LM) 

    = | |a
→

 (OL) + | |a
→

 (LM) 

    = a
→

 . b
→

 + a
→

 . c
→

  [by using (1) and (2)] 

 Hence a
→

 .( )b
→

 + c
→

 = a
→

 . b
→

 + a
→

 . c
→

 

 Corollary : a
→

 .( )b
→

 − c
→

 = a
→

 . b
→

 − a
→

 . c
→

 

Property 9 :   

 (i)  For any two vectors a
→

 and b
→

,  

  ( )a
→

 + b
→

2

  = ( )a
→ 2

 + 2 a
→

 . b
→

  + ( )b
→ 2

 = a2 + 2 a
→

 . b
→

 + b2 

Proof :  ( )a
→

 + b
→

2

 = ( )a
→

 + b
→

 . ( )a
→

 + b
→

 

   = a
→

. a
→

 + a
→

. b
→

 + b
→

. a
→

 + b
→

. b
→

 (by distribution law) 

   = ( )a
→ 2

+ a
→

. b
→

 + a
→

. b
→

 + ( )b
→ 2

  ( )‡ a
→

. b
→

 = b
→

. a
→

  

   = ( )a
→ 2

+ 2 a
→

. b
→

 + ( )b
→ 2

 = a2 + 2 a
→

. b
→

 + b2 

  (ii) ( )a
→

 − b
→

2

  = ( )a
→ 2

 − 2 a
→

 . b
→

  + ( )b
→ 2

 = a2 − 2 a
→

 . b
→

 + b2 
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(iii)  ( )a
→

 + b
→

 . ( )a
→

 − b
→

 = ( )a
→ 2

− ( )b
→ 2

 = a2 − b2 

Proof : ( )a
→

 + b
→

 . ( )a
→

 − b
→

 = a
→

 . a
→

 − a
→

 . b
→

 + b
→

 . a
→

 − b
→

 . b
→

 

   = ( )a
→ 2

− ( )b
→ 2

 = a2 − b2 

Property 10 :  Scalar product in terms of components : 

 Let a
→

  = a1 i
→

 + a2 j
→

 + a3 k
→

           b
→

  = b1 i
→

 + b2 j
→

 + b3 k
→

 

  a
→

 . b
→

  =  a1 i
→

 + a2 j
→

 + a3 k
→

 .  b1 i
→

 + b2 j
→

 + b3 k
→

 

   = a1b1 ( )i
→

. i
→

 + a1b2 ( )i
→

. j
→

 + a1b3 ( )i
→

. k
→

 + a2b1 ( )j
→

. i
→

  

+ a2b2 ( )j
→

. j
→

 + a2b3 ( )j
→

. k
→

 + a3b1 ( )k
→

. i
→

 + a3b2 ( )k
→

. j
→

 + a3b3 

( )k
→

. k
→

 

   = a1b1(1) + a1b2(0) + a1b3(0) + a2b1(0) + a2b2(1) + a2b3(0) 

+ a3b1(0) + a3b2(0) + a3b3(1)  

   = a1b1 + a2b2 + a3b3 

 Thus, the scalar product of two vectors is equal to the sum of the products 

of their corresponding components. 

Property 11 :   Angle between two vectors : 

 Let a
→

,  b
→

 be two vectors inclined at an angle θ. 

 Then a
→

 . b
→

  = | |a
→

 | |b
→

  cos θ 

  ⇒ cos θ = 
a
→

 . b
→

| |a
→ | |b

→
 
   ⇒ θ = cos−1 









a

→
 . b
→

| |a
→ | |b

→
 

  

  If  a
→

 = a1 i
→

 + a2 j
→

 + a3 k
→

  and b
→

 = b1 i
→

 + b2 j
→

 + b3 k
→

   

  Then  a
→

 . b
→

  = a1b1 + a2b2 + a3b3 

  | |a
→

 = a1
2 + a2

2 + a3
2  ;  | |b

→
 = b1

2 + b2
2 + b3

2 

  ∴  θ = cos−1 






a1b1 + a2b2 + a3b3

a1
2 + a2

2 + a3
2 b1

2 + b2
2 + b3

2
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Property 12 :   For  any two vectors a
→

 and b
→

 

  | |a
→

 + b
→

 ≤ | |a
→

 + | |b
→

  (Triangle inequality) 

 We have  | |a
→

 + b
→

2

 = | |a
→ 2

+ | |b
→ 2

 + 2( )a
→

 . b
→

  

  ⇒  | |a
→

 + b
→

2

 = | |a
→ 2

+ | |b
→ 2

 + 2| |a
→

 | |b
→

 cos θ 

   ≤ | |a
→ 2

+ | |b
→ 2

 + 2| |a
→

 | |b
→

  [‡ cosθ ≤ 1] 

  ⇒  | |a
→

 + b
→

2

 ≤  | |a
→

 + | |b
→ 2

 

  ⇒  | |a
→

 + b
→

 ≤ | |a
→

 + | |b
→

 

Example 2.1 : Find a
→

 . b
→

 when 

 (i) a
→

 = i
→

 − 2 j
→

 + k
→

 and b
→

 = 4 i
→

 − 4 j
→

 + 7 k
→

 

 (ii) a
→

 = j
→

 + 2 k
→

 and b
→

 = 2 i
→

 + k
→

 

 (iii) a
→

 = j
→

 − 2 k
→

 and b
→

 = 2 i
→

 + 3 j
→

 − 2 k
→

 
Solution : 

 (i)   a
→

 . b
→

  = ( )i
→

 − 2 J
→

 + k
→

 . ( )4 i
→

 − 4 j
→

 + 7 k
→

 

    = (1) (4) + (− 2) (− 4) + (1) (7) = 19 

 (ii)  a
→

 . b
→

  = ( )j
→

 + 2 k
→

 . ( )2 i
→

 + k
→

 = (0) (2) + (1) (0) + (2) (1) = 2 

 (iii) a
→

 . b
→

  = ( )j
→

 − 2 k
→

 . ( )2 i
→

+ 3 j
→

 − 2 k
→

  

    = (0) (2) + (1) (3) + (− 2) (− 2) = 7 

Example 2.2 : For what value of m the vectors a
→

 and b
→

 are perpendicular to 
each other  

 (i) a
→

 = m i
→

 + 2 j
→

 + k
→

 and b
→

 = 4 i
→

 − 9 j
→

 + 2 k
→

 

 (ii) a
→

 = 5 i
→

 − 9 j
→

 + 2 k
→

  and b
→

 = m i
→

 + 2 j
→

 + k
→

 
Solution : 

 (i)   Given : a
→

 ⊥ b
→
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  ∴ a
→

 . b
→

 = 0  ⇒  ( )m i
→

 + 2 j
→

 + k
→

 . ( )4 i
→

 − 9 J
→

 + 2 k
→

 = 0 
  ⇒  4m − 18 + 2 = 0   ⇒   m = 4 

 (ii)  ( )5 i
→

 − 9 J
→

 + 2 k
→

 . ( )m i
→

 + 2 j
→

 + k
→

 = 0 

  ⇒  5m − 18 + 2 = 0   ⇒   m = 
16
5  

Example 2.3 : If a
→

 and b
→

 are two vectors such that | |a
→

 = 4, | |b
→

 = 3 and  

a
→

 . b
→

 = 6. Find the angle between a
→

 and b
→

 
Solution : 

 cos θ = 
a
→

 . b
→

| |a
→ | |b

→
 = 

6
(4)  (3)  = 

1
2       ⇒  θ = 

π
3 

Example 2.4 : Find the angle between the vectors  

3 i
→

 − 2 j
→

 − 6 k
→

 and 4 i
→

 − j
→

 + 8 k
→

 

Solution : Let  a
→

 = 3 i
→

 − 2 j
→

 − 6 k
→

   ;  b
→

 = 4 i
→

 − j
→

 + 8 k
→

 
  Let ‘θ’ be the angle between the vectors    

   a
→

 . b
→

 = 12 + 2 − 48 = − 34 

   | |a
→

 = 7,  | |b
→

 = 9 

 cos θ  =  
a
→

 . b
→

| |a
→ | |b

→
 = 

− 34
7 × 9

 

   θ = cos−1 



− 

34
63  

Example 2.5 : Find the angle between the vectors a
→

 and b
→

  

where a
→

 = i
→

 − j
→

  and b
→

 = j
→

 − k
→

  

Solution : cos θ = 
a
→

 . b
→

| |a
→ | |b

→
 = 

( )i
→

 − j
→

  . ( )j
→

 − k
→

| |i
→

 − j
→

   | |j
→

 − k
→

 
 

   ⇒  cos θ = 
(1) (0)  +  (− 1) (1)  +  (0) (− 1)

2 × 2
 

   ⇒  cos θ = − 
1
2  ⇒  θ = 

2π
3  
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Example 2.6 : For any vector r
→

 

prove that r
→

 = ( )r
→

 . i
→

 i
→

 + ( )r
→

 . j
→

 j
→

+ ( )r
→

 . k
→

 k
→

 

Solution : Let r
→

 = x i
→

 + y j
→

 + z k
→

 be an arbitrary vector. 

   r
→

. i
→

 = ( )x i
→

 + y j
→

 + z k
→

 . i
→

 = x 

   r
→

. j
→

 = ( )x i
→

 + y j
→

 + z k
→

 . j
→

 = y 

   r
→

. k
→

 = ( )x i
→

 + y j
→

 + z k
→

 . k
→

 =  z 

  ( )r
→

 . i
→

 i
→

 + ( )r
→

 . j
→

 j
→

+ ( )r
→

 . k
→

 k
→

= x i
→

 + y j
→

 + z k
→

 = r
→

  

Example 2.7 : Find the projection of the vector  

7 i
→

 + j
→

 − 4 k
→

 on 2 i
→

 + 6 j
→

 + 3 k
→

 

Solution :  Let  a
→

 = 7 i
→

 + j
→

 − 4 k
→

  ;  b
→

 = 2 i
→

 + 6 j
→

 + 3 k
→

 

 Projection of a
→

 on b
→

 = 
a
→

 . b
→

| |b
→

 = 
( )7 i

→
 + j
→

 − 4 k
→

 . ( )2 i
→

 + 6 j
→

 + 3 k
→

| |2 i
→

 + 6 j
→

 + 3 k
→

 

  = 
14 + 6 − 12

4 + 36 + 9
  =  

8
7 

Example 2.8 : For any two vectors a
→

 and b
→

  

prove that | |a
→

 + b
→

2

 + | |a
→

 − b
→ 2

 = 2 



| |a

→ 2
 + | |b

→ 2
  

Solution :  | |a
→

 + b
→

2

 = ( )a
→

 + b
→

2

 = | |a
→ 2

+ | |b
→ 2

 + 2 a
→

 . b
→

 … (1) 

   | |a
→

 − b
→

2

 = ( )a
→

 − b
→

2 

= | |a
→ 2

+ | |b
→ 2

 − 2 a
→

 . b
→

 … (2) 
Adding (1) and (2) 

 | |a
→

 + b
→

2

 + | |a
→

 − b
→

2

 = | |a
→ 2

+ | |b
→ 2

 + 2 a
→

 . b
→

 + | |a
→ 2

 

+ | |b
→ 2

 − 2 a
→

 . b
→

  

  = 2| |a
→ 2

+ 2| |b
→ 2

  = 2



| |a

→ 2
+ | |b

→ 2
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Example 2.9 : If a
∧

 and b
∧

  are unit vectors inclined at an angle θ, then prove that 

sin 
θ
2  =  

1
2   a

∧
 − b
∧

 

Solution :      a
∧

 − b
∧ 2

 =  a
∧2 + b

∧2 − 2a
∧

 . b
∧

 = 1 + 1 − 2  a
∧

  b
∧

 cos θ 

    = 2 − 2 cos θ  =  2 (1 − cos θ) = 2 



2 sin2 
θ
2  

   ∴  a
∧

 − b
∧

 = 2 sin 
θ
2   ⇒   sin 

θ
2 = 

1
2   a

∧
 − b
∧

 

Example 2.10 : If a
→

 + b
→

 + c
→

 = 0
→

,  | |a
→

= 3,  | |b
→

= 5 and | |c
→

 = 7, find the 

angle between a
→

 and b
→

 

Solution :   a
→

 + b
→

 + c
→

 = 0
→

 

   a
→

 + b
→

  = − c
→

 

   ( )a
→

 + b
→

2

 = ( )− c
→ 2

 

   ⇒   ( )a
→ 2

 +  ( )b
→ 2 

+ 2 a
→

 . b
→

 = ( )c
→ 2 

  ⇒   | |a
→ 2

 +  | |b
→ 2 

+ 2| |a
→

 | |b
→

cos θ = | |c
→

2

 

   ⇒  32 + 52 + 2(3) (5) cos θ = 72 

   cos θ = 
1
2   ⇒   θ = 

π
3 

Example 2.11 : Show that the vectors  

 2 i
→

 − j
→

 + k
→

,  i
→

 − 3 j
→

 − 5 k
→

, −3 i
→

 + 4 j
→

 + 4 k
→

 form the sides of a right 
angled triangle. 

Solution : Let a
→

 = 2 i
→

 − j
→

 + k
→

 ; b
→

 = i
→

 −3 j
→

 −5 k
→

  ; c
→

= −3 i
→

 + 4 j
→

 + 4 k
→

 

 We see that  a
→

 + b
→

  + c
→

 = 0
→

 

 ∴  a
→

, b
→

, c
→

 forms a triangle 

 Further  a
→

 . b
→

 = ( )2 i
→

 − j
→

 + k
→

  . ( )i
→

 − 3 j
→

 − 5 k
→

  

    = 2 + 3 − 5 = 0 

 ∴  a
→

 ⊥ b
→

  ∴ The vectors form the sides of a right angled triangle. 
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EXERCISE 2.1 

  (1) Find a
→

 . b
→

 when  a
→

 = 2 i
→

 + 2 j
→

 − k
→

  and b
→

 = 6 i
→

 − 3 j
→

 + 2 k
→

 

 (2) If  a
→

 = i
→

 + j
→

 + 2 k
→

 and b
→

 = 3 i
→

 + 2 j
→

 − k
→

 find 

  ( )a
→

 + 3 b
→

 . ( )2 a
→

 − b
→

 

 (3) Find λ so that the vectors 2 i
→

 + λ j
→

 + k
→

 and i
→

 − 2 j
→

 + k
→

 are 
perpendicular to each other. 

 (4) Find the value of m for which the vectors a
→

 = 3 i
→

 + 2 j
→

 + 9 k
→

 and  

b
→

 = i
→

 + m j
→

 + 3 k
→

 are (i) perpendicular  (ii) parallel 

 (5) Find the angles which the vector i
→

 − j
→

 + 2 k
→

 makes with the 
coordinate axes. 

 (6) Show that the vector i
→

  + j
→

 + k
→

 is equally inclined with the 
coordinate axes. 

 (7) If a
∧

 and b
∧

 are unit  vectors inclined at an angle θ, then prove that  

  (i) cos 
θ
2 = 

1
2  a

∧
 + b
∧

 (ii)  tan 
θ
2  =  

 a
∧

 − b
∧

 a
∧

 + b
∧  

 (8) If the sum of two unit vectors is a unit vector prove that the magnitude of 
their difference is 3 . 

 (9) If a
→

 , b
→

, c
→

 are three mutually perpendicular unit vectors, then prove 

that | |a
→

 + b
→

 + c
→

 = 3 

 (10) If | |a
→

 + b
→

 = 60,  | |a
→

 − b
→

 = 40  and | |b
→

 = 46  find | |a
→

. 

 (11) Let u
→

, v
→

 and w
→

 be vector such that u
→

 + v
→

 + w
→

 = 0
→

.  

  If | |u
→

 = 3, | |v
→

 = 4  and | |w
→

 = 5 then find u
→

. v
→

 + v
→

. w
→

 + w
→

. u
→

 

 (12) Show that the vectors 3 i
→

 − 2 j
→

 + k
→

, i
→

 − 3 j
→

 + 5 k
→

 and  

  2 i
→

 + j
→

 − 4 k
→

 form a right angled triangle. 
 (13) Show that the points whose position vectors  

  4 i
→

 − 3 j
→

 + k
→

, 2 i
→

 − 4 j
→

 + 5 k
→

, i
→

 − j
→

 form a right angled triangle. 
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 (14) Find the projection of 

  (i) i
→

 − j
→

 on z-axis  (ii) i
→

 + 2 j
→

 − 2 k
→

 on 2 i
→

 − j
→

 + 5 k
→

 

  (iii) 3 i
→

 + j
→

 − k
→

 on 4 i
→

 − j
→

 + 2 k
→

 
2.3.2 Geometrical Applicaton of dot product 
Cosine formulae :  
Example 2.12 : With usual notations : 

 (i) cos A=
b2 + c2 − a2

2bc   ;  (ii) cos B = 
c2 + a2 − b2

2ac   (iii) cos C = 
a2 + b2 − c2

2ab  

Solution (i) : 
 From the diagram 

 AB
→

 + BC
→

 + CA
→

 = 0
→

 ⇒ a
→

+ b
→

+ c
→

 = 0
→

 

 a
→

 = − ( )b
→

 + c
→

 

 ( )a
→ 2

 = ( )b
→

 + c
→ 2

 

 ⇒  a2 = b2 + c2 + 2 b
→

 . c
→

 

 
 
 
 
 
 

Fig. 2.5 

 ⇒ a2 = b2 + c2 + 2bc cos(π − A) 

                a2 = b2 + c2 − 2bc cos A  

  2bc cosA = b2 + c2 − a2 

            cos A = 
b2 + c2 − a2

2bc  

 Similarly we can prove the results (ii) & (iii) 
Projection Formulae : 
Example 2.13 : With usual notations 
 (i) a = b cos C+c cos B   (ii) b = a cos C+c cos A   (iii) c = a cos B+b cos A 
Solution  (i) : 
 From the diagram 

 AB
→

 + BC
→

 + CA
→

 = 0
→

  

 ⇒ a
→

+ b
→

+ c
→

 = 0
→

 

 a
→

 = − b
→

 − c
→

 

 a
→

 . a
→

 = − a
→

. b
→

 − a
→

. c
→

 

 
 
 
 
 

Fig. 2.6 

a

b

π - B

A

C
B

c

aa

bb

π - B

A

C
B

cc

 

a

b
π - A A

CB

c

aa

bb
π - A A

CB

cc



 58

We have 

  a2 = − ab cos (π − C) − ac cos (π − B) 

  a2 = − ab (− cos C) − ac (− cos B) 

 ⇒ a2 =  ab cos C + ac cos B 

 ⇒                                a = b cos C + c cos B  

 Similarly (ii) and (iii) can be proved. 
Example 2.14 : Angle in a semi-circle is a right angle. Prove by vector method. 
Solution : Let AB be the diameter of the circle with centre O. 
 Let P be any point on the semi-circle. 

 To prove APB  = 90° 

 We have OA = OB = OP  (radii) 

 Now  PA
→

 = PO
→

 + OA
→

 

 Also PB
→

 = PO
→

 + OB
→

 

  = PO
→

 − OA
→

 

 
 
 
 
 
 

Fig. 2.7 

  ∴ PA
→

 . PB
→

 =  PO
→

 + OA
→

 .  PO
→

 − OA
→

 

   =  PO
→ 2

 −  OA
→ 2

 

   = PO2  −  OA2 = 0 

  ∴ PA
→

  ⊥ PB
→

   ⇒   APB  = 
π
2 

 Hence angle in a semi-circle is a right angle. 
Example 2.15 : Diagonals of a rhombus are at right angles. Prove by vector 
methods. 

Solution : Let ABCD be a rhombus. Let AB
→

 = a
→

 and AD
→

 = b
→

 
 We have AB = BC = CD = DA 

 i.e.,  | |a
→

 = | |b
→

 … (1) 

  AC
→

 = AB
→

 + BC
→

 = a
→

 + b
→

 

 Also  BD
→

 = BC
→

 + CD
→

 

   = AD
→

 − AB
→

 = b
→

 − a
→

 

 
 
 
 
 
 

Fig. 2.8 

A O B

P
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b

A

C

B
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A
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B

D
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  ∴ AC
→

 . BD
→

 = ( )a
→

 + b
→

 . ( )b
→

 − a
→

 

   = ( )b
→

 + a
→

 . ( )b
→

 − a
→

 

   = ( )b
→ 2

 − ( )a
→ 2

 = 0    ‡| |a
→

 = | |b
→

 

  Thus   AC
→

 . BD
→

 = 0   ⇒  AC
→

 ⊥ BD
→

 
 Hence the diagonals of a rhombus are at right angles. 
Example 2.16 : Altitudes of a triangle are concurrent – prove by vector method. 
Solution : 
 Let ABC be a triangle and let AD, BE be its two altitudes intersecting at O. 
 In order to prove that the altitudes are concurrent it is sufficient to prove 
that CO is perpendicular to AB. 

 Taking O as the origin, let the position vectors of A, B, C be a
→

, b
→

, c
→

 
respectively. 

Then OA
→

 = a
→

  ; OB
→

 = b
→

 ;   OC
→

 = c
→

 

Now AD ⊥ BC 

 ⇒ OA
→

 ⊥ BC
→

 

 
 

 
 
 

Fig. 2.9 

  ⇒                OA
→

 . BC
→

 = 0 

  ⇒       a
→

 . ( )c
→

 − b
→

 = 0 

  ⇒   a
→

 . c
→

 − a
→

 . b
→

 = 0 …(1)  

  BE ⊥ CA  ⇒  OB
→

 ⊥  CA
→

 

  ⇒  OB
→

 . CA
→

 = 0   ⇒  b
→

 . ( )a
→

 − c
→

 = 0 

  ⇒  b
→

 . a
→

 − b
→

 . c
→

 = 0 … (2) 
 Adding (1) and (2), we get 

  a
→

 . c
→

 − b
→

 . c
→

 = 0   ⇒   ( )a
→

 − b
→

 . c
→

 = 0 

A

CB D

E
F

O

A

CB D

E
F

O
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  ⇒   BA
→

 . OC
→

 = 0   ⇒   OC
→

  ⊥ AB
→

 
 Hence the three altitudes are concurrent. 
Example 2.17 : Prove that    cos (A − B) = cos A cos B + sin A  sin B 
Solution : 
 Take the points P and Q on the unit 
circle with centre at the origin O. 
Assume that OP and OQ make angles  
A and B with x-axis respectively. 

 ∴ POQ  = POx  − QOx  = A − B 

 Clearly the coordinates of P and Q 
are (cos A, sin A) and (cos B, sin B) . 

 
 
 
 
 
 
 

Fig. 2.10 

Take the unit vectors i
→

 and j
→

 along x and y axes. 

 ∴ OP
→

 = OM
→

 + MP
→

 = cos A i
→

 + sin A j
→

 

 OQ
→

 = OL
→

 + LQ
→

  =  cos B i
→

 + sin B j
→

 

 By value,    OP
→

 . OQ
→

 = ( )cos A i
→

 + sin A j
→

 . ( )cos B i
→

 + sin B j
→

 ..(1) 
  = cos A  cos B + sin A  sin B 

By definition ,  OP
→

 . OQ
→

 =  OP
→

   OQ
→

 cos (A − B) = cos (A − B) .. (2) 
 From (1) and (2)   cos (A − B) = cos A  cos B + sin A sin B 
2.3.4  Application of Scalar Product in Physics 
Work done by force : 
 The work done by a force is a scalar quantity and its measure is equal to 
the product of the magnitude of the force and the resolved part of the 
displacement in the direction of the force. 
 Let a particle be placed at O and a 

force F
→

 represented by OB
→

 be acting on 
the particle at O. Due to the application 

of force F
→

, the particle is displaced in 

the direction of OA
→

. Here OA
→

 is the 
displacement and OL is the displacement 

in the direction of F
→

 

 
 
 
 
 
 
 
 

Fig. 2.11 
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 OL = OA cos θ  = | |d
→

 cos θ  


where θ is the angle

between F
→

 and d
→

 
 

  The work done by a force = (Magnitude of force)  
     (displacement in the direction of force) 

    =  F
→

 OL =  F
→

 | |d
→

 cos θ 

   Work done by the force = F
→

 . d
→

 
Note : If a number of forces are acting on a particle, then the sum of the works 
done by the separate forces is equal to the work done by the resultant force. 
Example 2.18 : Find the work done in moving a particle from the point A,  

with position vector 2 i
→

 − 6 j
→

 + 7 k
→

, to the point B, with position vector  

3 i
→

 − j
→

 − 5 k
→

, by a force F
→

 = i
→

 + 3 j
→

 − k
→

 
Solution : 

 F
→

 = i
→

 + 3 j
→

 − k
→

  ;   OA
→

 = 2 i
→

 − 6 j
→

 + 7 k
→

 ; OB
→

 = 3 i
→

 − j
→

 − 5 k
→

 

   d
→

 = AB
→

 = OB
→

 − OA
→

 = i
→

 + 5 j
→

 − 12 k
→

 

   Work done = F
→

 . d
→

 

    = ( )i
→

 + 3 j
→

 − k
→

 . ( )i
→

 + 5 j
→

 − 12k
→

 

    = (1) (1) + 3(5) + 12 = 28 

Example 2.19 : The work done by the force F
→

 = a i
→

 + j
→

 + k
→

 in moving the 
point of application from (1, 1, 1) to (2, 2, 2) along a straight line is given to be 
5 units. Find the value of a. 

Solution :  F
→

 = a i
→

 + j
→

 + k
→

 ;  OA
→

 = i
→

 + j
→

 + k
→

 ;  OB
→

 = 2 i
→

 + 2 j
→

 + 2 k
→

 

   Work done = 5  units 

   d
→

 = AB
→

 = OB
→

 − OA
→

  = i
→

 + j
→

 + k
→

 

   Work done = F
→

 . d
→

 

   5 = ( )a i
→

 + j
→

 + k
→

 . ( )i
→

 + j
→

 + k
→

 

   5 = a + 1 + 1  ⇒ a  =  3   
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EXERCISE 2.2 
Prove by vector method 
 (1) If the diagonals of a parallelogram are equal then it is a rectangle. 
 (2) The mid point of the hypotenuse of a right angled triangle is equidistant 

from its vertices 
 (3) The sum of the squares of the diagonals of a parallelogram is equal to the 

sum of the squares of the sides. 

 (4) cos (A + B) = cos A  cos B − sin A  sin B 

  (5) Find the work done by the force F
→

 = 2 i
→

 + j
→

 + k
→

 acting on a particle, 
if the particle is displaced from the point with position vector  

2 i
→

 + 2 j
→

 + 2 k
→

 to the point with position vector 3 i
→

 + 4 j
→

 + 5 k
→

. 

 (6) A force of magnitude 5 units acting parallel to 2 i
→

 − 2 j
→

 + k
→

 displaces 
the point of application from (1, 2, 3) to (5, 3, 7). Find the work done. 

 (7) The constant forces 2 i
→

 − 5 j
→

 + 6 k
→

, − i
→

 + 2 j
→

 − k
→

 and 2 i
→

 + 7 j
→

 act 

on a particle which is displaced from position 4 i
→

 − 3 j
→

 − 2 k
→

 to position 

6 i
→

 + j
→

 − 3 k
→

. Find the work done. 
 (8) Forces of magnitudes 3 and 4 units acting in the directions  

  6 i
→

 + 2 j
→

 + 3 k
→

 and 3 i
→

 − 2 j
→

 + 6 k
→

 respectively act on a particle which 
is displaced from the point (2, 2, − 1) to (4, 3, 1). Find the work done by 
the forces. 

2.4  Vector product : 
2.4.1 Right-handed and left handed systems : 

 Consider a set of three linearly independent vectors a
→

 , b
→

 , c
→

 through the 
origin O. As they are linearly independent no two of them have parallel 
directions and not all of them lie on the same plane. Let θ be the smaller angle 

(i.e. 0 < θ < π) between a
→

  and b
→

 . Let an observer walk from a
→

  to b
→

  
through the angle θ keeping O always to his left. If the observer’s head is on the 

same side of the plane of a
→

 and b
→

  as the vector c
→

 , we say a
→

 , b
→

 , c
→

  is a 
right handed system or right handed triple (or) triad. 

 If c
→

 has the opposite direction, a
→

 , b
→

 , c
→

 is a left handed system. 
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Fig. 2. 12 

Definition : The vector product of two vectors a
→

 and b
→

 is denoted as a
→

 × b
→

  

and it is defined as a vector whose magnitude is | |a
→

 | |b
→

 sin θ where θ is the 

angle between a
→

 and b
→

, 0 ≤ θ ≤ π and  whose direction is perpendicular to 

both a
→

 and b
→

 in such a way that a
→

, b
→

 and this direction constitute a right 
handed system. 
 In other words, 

 a
→

 × b
→

 = | |a
→

 | |b
→

 sin θ  n
∧

, where 

θ is the angle between a
→

 and b
→

 and n
∧

 
is a unit vector perpendicular to both 

a
→

 and b
→

 such that a
→

 , b
→

, n
∧

 form a 
right handed system. 

 
 
 
 
 
 

Fig. 2.13 

Note : 

 (1) a
→

, b
→

, n
∧

 form a right handed system means that if we rotate a
→

 into 

b
→

, then n
∧

 will point in the direction perpendicular to the plane 

containing  a
→

 and b
→

 in which a right handed screw will move if it is 
turned in the same manner. 

 (2) a
→

 × b
→

 is read as a
→

 cross b
→

 since we are putting cross between a
→

 

and b
→

 . 

2.4.2  Geometrical interpretation of Vector product : 

     Let OA
→

 = a
→

 ,  OB
→

 = b
→

 

a

b

O

c

a

b

O

c

y

z

x

y

x

z

a
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O
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aa
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O
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O
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O
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z

y

x

z
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b
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<
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bb

a bxa a bbx

n

<

n

< n

<

n

<
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   Let θ be the angle between a
→

 and b
→

  
 Complete the parallelogram OACB 

with OA
→

 and OB
→

 as adjacent sides. 

 Draw BN ⊥ OA. 
 In right angled triangle ONB  

 BN = | |b
→

 sin θ 

 
 
 
 
 
 

Fig. 2.14 

 Now a
→

 × b
→

  = | |a
→

 | |b
→

 sin θ n
∧

 

  | |a
→

  ×  b
→

 = | |a
→

 | |b
→

 sin θ  

   = (OA)  (BN) 

   = Base × height 
   = Area of parallelogram OACB 

  ∴ | |a
→

  ×  b
→

 = 


 Area of parallelogram with

 a
→

 and b
→

 as adjacent sides
 

  Also,  area of ∆OAB = 
1
2  area of a parallelogram OACB 

   = 
1
2  | |OA

→
  ×  OB

→
 =  

1
2 | |a

→
  ×  b

→
 

  Vector area of ∆OAB = 
1
2  ( )a

→
  ×  b

→
 

Some important results : 

Result : (1) The area of a parallelogram with adjacent sides a
→

 and b
→

 is 

| |a
→

  ×  b
→

 

  (2) The vector area of a parallelogram with adjacent sides is a
→

 × b
→

 

  (3) The area of a triangle with sides a
→

 and b
→

 is 
1
2 | |a

→
  ×  b

→
 

  (4) The area of a triangle ABC is 
1
2  AB

→
 × AC

→
 (or) 

1
2  BC

→
 × BA

→
  

(or)  
1
2   CA

→
 × CB

→
 

a

b

θ

A

CB

n

<

NO
aa

bb

θ

A

CB

n

<

n

<

NO
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2.4.3 Properties of Vector Product : 
Property (1) : Non-Commutativity of Vector product : 

 Vector product is not commutative (i.e.) if a
→

 and b
→

 are any two vectors, 

then a
→

 × b
→

 ≠ b
→

 × a
→

 however a
→

 × b
→

 = − ( )b
→

 × a
→

 . 

 Let  a
→

 and b
→

  be two non-zero, 
non parallel vectors and let θ be the 
angle between them. Then 

 a
→

 × b
→

 = | |a
→

 | |b
→

 sin θ n
∧

 where 

n
∧

 is a unit vector perpendicular to the 

plane of a
→

 and b
→

 

 
 
 
 
 
 
 

Fig. 2.15 

 b
→

 × a
→

 = | |b
→

 | |a
→

 sin(θ) (− n
∧

) = − | |a
→

 | |b
→

 sin θ  n
∧

 = − ( )a
→

 × b
→

 

Note that b
→

, a
→

 and − n
∧

 form a right handed system. 

  Hence   a
→

 × b
→

 ≠ b
→

 × a
→

  

  But a
→

 × b
→

 = − ( )b
→

 × a
→

 

Property (2) : 
Vector product of Collinear (Parallel) Vectors : 

 If the vectors a
→

 and b
→

 are collinear or parallel  then a
→

 × b
→

 = 0
→

 

 The vectors a
→

 and b
→

 are collinear or parallel, then θ = 0, π 
    sin θ = 0  for θ = 0, π 

  Thus a
→

 × b
→

 = | |a
→

 | |b
→

 sin θ  n
∧

  

   = | |a
→

 | |b
→

 (O) n
∧

  = 0
→

 
Result : The vector product of two non-zero vectors is zero vector if and only if 
they are parallel (collinear) 

     i.e.,  a
→

 × b
→

 = o
→

  ⇔  a
→

is parallel to b
→

,  where a
→

, b
→

are non zero vectors. 
Proof (i) : 

  Suppose a
→

 × b
→

 = O
→

 

a

b

A

B

2π - θ θ

n
<

- n

<

− θ

aa

bb

A

B

2π - θ θ

n
<

n
<

- n

<

- n

<

− θ
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  then   | |a
→

 | |b
→

 sin θ  n
∧

 = O
→

   But | |a
→

≠ 0  & | |b
→

≠ 0, n
∧

 ≠ O
→

 
  ⇒   sin θ = 0      ⇒  θ = 0 or  π 

 ⇒  a
→

  and b
→

 are collinear (parallel) 

  conversely if       a
→

  || b
→

  then  
  θ = O  or π 
  ⇒   sin θ = O 

  ⇒  a
→

 × b
→

 = | |a
→

 | |b
→

 sin θ  n
∧

 = o
→

 

  ⇒  a
→

 × b
→

 = o
→

 

Note : If a
→

 × b
→

 = o
→

, we have the following three possibilities. 

 (i)  a
→

 is a zero vector and b
→

 is any vector. 

 (ii) b
→

 is a zero vector and a
→

 is any vector 

 (iii) a
→

 and b
→

 are parallel (collinear) 
Property (3) : 
Cross Product of Equal Vectors : 

   a
→

 × a
→

 = | |a
→

 | |a
→

 sin θ  n
∧

  

    = | |a
→

 | |a
→

 (0) n
∧

 

    = o
→

 

 ∴  a
→

 × a
→

 = o
→

 for every non-zero vector a
→

 
Property (4) : 

Cross product of Unit Vectors  i
→

, j
→

, k
→

 
 By the above property 

   i
→

 × i
→

 = j
→

 × j
→

 = k
→
× k
→

 = O
→

 
 
 
 
 
 
 

Fig. 2. 16 
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 Also  i
→

 × j
→

 = | |i
→

 | |j
→

 sin 90° k
→

 = (1) (1) (1) k
→

 = k
→

 

 Similarly j
→

 × k
→

 = i
→

,    k
→

 × i
→

 = j
→

 

 and  j
→

 × i
→

 = − k
→

,   k
→

 × j
→

 = − i
→

,   i
→

 × k
→

 = − j
→

 
 
Property (5) : 

 If m is any scalar and a
→

, b
→

 are two vectors inclined at angle θ, then 

   m a
→

 × b
→

 = m ( )a
→

 × b
→

  = a
→

 × m b
→

 

Property (6) : Distributivity of vector product over vector addition  

 Let a
→

, b
→

, c
→

 be any three vectors. then 

 (i)  a
→

 × ( )b
→

+ c
→

 = a
→

 × b
→

 + a
→

 × c
→

  (Left distributivity) 

 (ii)  ( )b
→

+ c
→

 × a
→

 = ( )b
→

 × a
→

 + ( )c
→

 × a
→

  (Right distributivity) 

Result : 
Vector Product in the determinant form 

 Let  a
→

 = a1 i
→

 + a2 j
→

 +  a3 k
→

 and 

   b
→

 = b1 i
→

 + b2 j
→

 +  b3 k
→

  be the two vectors 

 Then a
→

 × b
→

 =  a1 i
→

 + a2 j
→

 +  a3 k
→

 ×  b1 i
→

 + b2 j
→

 +  b3 k
→

 

    = a1b1( )i
→

 × i
→

 + a1b2( )i
→

 × j
→

 + a1b3( )i
→

 × k
→

 

+ a2b1( )j
→

 × i
→

 + a2b2( )j
→

 × j
→

 + a2b3( )j
→

 × k
→

 

+ a3b1( )k
→

 × i
→

 + a3b2( )k
→

 × j
→

 + a3b3( )k
→

 × k
→

 

    = a1b2 k
→

 + a1b3( )− j
→

 + a2b1( )− k
→

  + a2b3 i
→

  

+ a3b1 j
→

 + a3b2( )− i
→

   

    = ( a2b3 − a3b2) i
→

 − (a1b3 − a3b1) j
→

 + ( a1b2 − a2b1) k
→
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    = 





i

→
   j
→

   k
→

a1   a2   a3

b1   b2   b3

 

Property (7) : Angle between two vectors : 

 Let a
→

, b
→

 be two vectors inclined at an angle θ. 

   Then  a
→

 × b
→

 = | |a
→

 | |b
→

 sin θ  n
∧

  

   ⇒ | |a
→

 × b
→

 =  | |a
→

 | |b
→

 sin θ  n
∧

  

   ⇒  | |a
→

 × b
→

 = | |a
→

 | |b
→

sin θ   

   ⇒  sin θ = 
| |a
→

 × b
→

| |a
→

 | |b
→

  ⇒  θ = sin−1 









| |a

→
 × b
→

| |a
→

 | |b
→

 

Note : 

 In this case θ is always acute. Thus if we try to find the angle using vector 
product, we get only the acute angle. 

 Hence in problems of finding the angle, the use of dot product is preferable 
since it specifies the position of the angle θ. 

Property (8) : Unit vectors perpendicular to two given vectors   

 (i.e.)  Unit vectors normal to the plane of two given vectors. 

 Let a
→

, b
→

 be two non-zero, non-parallel vectors and θ be the angle 
between them. 

   a
→

 × b
→

 = | |a
→

 | |b
→

 sin θ  n
∧

  … (1) 

 Where n
∧

 is a unit vector perpendicular to the both of a
→

 and b
→

 

   | |a
→

 × b
→

 = | |a
→

 | |b
→

 sin θ … (2)  

 From (1) and (2)  n
∧

 = 
a
→

 × b
→

| |a
→

 × b
→
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 Note that − 
a
→

 × b
→

| |a
→

 × b
→

 is also a unit vector perpendicular to a
→

 and b
→

 

 Unit vectors perpendicular to a
→

 and b
→

 are 

   ∴ ± n
∧

 = ± 
a
→

 × b
→

| |a
→

 × b
→

 

 Vectors of magnitude µ normal to the plane containing a
→

 and b
→

 is given 

by  ± 
µ ( )a

→
 × b
→

| |a
→

 × b
→

 

Example 2.20 :   

   If a
→

, b
→

 are any two vectors, then  | |a
→

 × b
→

2

+ ( )a
→

 . b
→

2

= | |a
→

2

 | |b
→

2

  

Solution : 

 Let θ be the angle between a
→

 and b
→

   

 ∴    a
→

 × b
→

 = | |a
→

 | |b
→

 sin θ  n
∧

  

 | |a
→

 × b
→

 = | |a
→

 | |b
→

 sin θ   

 | |a
→

 × b
→

2

 = | |a
→

2

 | |b
→

2

 sin2 θ   

 ( )a
→

 . b
→

2

 = | |a
→

2

 | |b
→

2

 cos2θ 

 | |a
→

 × b
→

2

+ ( )a
→

 . b
→

2

  =  | |a
→

2

 | |b
→

2

 (sin2θ + cos2θ) = | |a
→

2

 | |b
→

2

  

Example 2.21 :  Find the vectors of magnitude 6 which are perpendicular to 

both the vectors 4 i
→

 − j
→

 + 3 k
→

  and − 2 i
→

 + j
→

 − 2 k
→

 
Solution : 

               Let a
→

  = 4 i
→

 − j
→

 + 3 k
→

  ;  b
→

 = − 2 i
→

 + j
→

 − 2 k
→

  

  Then a
→

 × b
→

 = 







i

→
   j
→

   k
→

4    − 1    3

− 2    1    − 2

 = − i
→

 + 2 j
→

 + 2 k
→
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   | |a
→

 × b
→

 = (− 1)2 + (2)2 + (2)2 = 3 

   Required vectors = 6 











± 









a

→
 × b
→

| |a
→

 × b
→

 

    = ± ( )− 2 i
→

 + 4 j
→

 + 4 k
→

 

Example 2.22 :  If | |a
→

 = 13, | |b
→

 = 5  and a
→

. b
→

 = 60 then find | |a
→

 × b
→

 
Solution : 

 | |a
→

 × b
→

2

 + ( )a
→

 . b
→

2

 =  | |a
→

2

 | |b
→

2

  

   | |a
→

 × b
→

2

 = | |a
→

2

 | |b
→

2

 − ( )a
→

 . b
→

2

  

    = (13)2 (5)2 − (60)2 = 625 

   ⇒  | |a
→

 × b
→

 = 25 

Example 2.23 :  Find the angle between the vectors 2 i
→

 + j
→

 − k
→

 and  

i
→

 + 2 j
→

 + k
→

 by using cross product. 
Solution : 

                Let    a
→

  = 2 i
→

 + j
→

 − k
→

  ;   b
→

 = i
→

 + 2 j
→

 + k
→

  

 Let θ be the angle between a
→

 and b
→

 

   ∴  θ = sin−1 









| |a

→
 × b
→

| |a
→

 | |b
→

 

   a
→

 × b
→

 = 







i

→
   j
→

   k
→

2    1    − 1

1    2    1

 = 3 i
→

 − 3 j
→

 + 3 k
→

 

 | |a
→

 × b
→

 = 32 + (− 3)2 + 32 = 3 3 

 | |a
→

 = 22 + 12 + (− 1)2 = 6 

 | |b
→

 = 12 + 22 + 12 = 6 



 71

 ∴  sin θ =   









| |a

→
 × b
→

| |a
→

 | |b
→

 = 




3 3

6  6
 =  



3

2  

 θ = 
π
3 

Example 2.24 :  If p
→

 = − 3 i
→

 + 4 j
→

 − 7 k
→

 and q
→

 = 6 i
→

 + 2 j
→

 − 3 k
→

 then find 

p
→

 × q
→

. Verify that p
→

 and p
→

 × q
→

 are perpendicular to each other and also 

verify that q
→

 and p
→

 × q
→

 are perpendicular to each other. 
Solution : 

                p
→

 × q
→

 = 







i

→
   j
→

   k
→

− 3    4    − 7

6    2    − 3

 

    = 2 i
→

 − 51 j
→

 − 30 k
→

 

 Now  p
→

 . ( )p
→

 × q
→

 = ( )− 3 i
→

 + 4 j
→

 − 7 k
→

 . ( )2 i
→

 − 51 j
→

 − 30 k
→

 

    = − 6 − 204 + 210 = 0 

 Hence p
→

 and p
→

 × q
→

 are perpendicular to each other. 

 Now  q
→

 . ( )p
→

 × q
→

 = ( )6 i
→

 + 2 j
→

 − 3 k
→

 . ( )2 i
→

 − 51 j
→

 − 30 k
→

 

    = 12 − 102 + 90 = 0 

 Hence q
→

 and p
→

 × q
→

 are perpendicular to each other. 
Example 2.25 :  If the position vectors of three points A, B and C are 

respectively i
→

 + 2 j
→

 + 3 k
→

, 4 i
→

 + j
→

 + 5 k
→

 and 7( )i
→

 + k
→

. Find AB
→

 × AC
→

 . 
Interpret the result geometrically. 
Solution : 

 OA
→

 = i
→

 + 2 j
→

 + 3 k
→

 ,    OB
→

 = 4 i
→

 + j
→

 + 5 k
→

  ;  OC
→

 = 7 i
→

 + 7 k
→

 

  AB
→

 = OB
→

 − OA
→

 =  ( )4 i
→

 + j
→

 + 5 k
→

 − ( )i
→

 + 2 j
→

 + 3 k
→

 

  AB
→

 = 3 i
→

 − j
→

 + 2 k
→
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 AC
→

 = OC
→

 − OA
→

 = 6 i
→

 − 2 j
→

 + 4 k
→

 

 AB
→

 × AC
→

 = 







i

→
   j
→

   k
→

3    − 1    2

6    − 2    4

 = 0
→

 

 The vectors AB
→

 and AC
→

 are parallel. But they have the point A as a 
common point. 

 ∴ AB
→

 and AC
→

 are along the same line. 

 ∴ A, B, C are collinear. 

EXERCISE 2.3 
  (1) Find the magnitude of 

  a
→

 × b
→

 if a
→

 = 2 i
→

 + k
→

, b
→

 = i
→

 + j
→

 + k
→

 

 (2) If | |a
→

 = 3,  | |b
→

 = 4 and a
→

. b
→

 = 9 then find | |a
→

 × b
→

 
 (3) Find the unit vectors perpendicular to the plane containing the vectors  

2 i
→

 + j
→

 + k
→

 and i
→

 + 2 j
→

 + k
→

 
 (4) Find the vectors whose length 5 and which are perpendicular to the 

vectors a
→

 = 3 i
→

 + j
→

 − 4 k
→

 and b
→

 = 6 i
→

 + 5 j
→

 − 2 k
→

 

 (5) Find the angle between two vectors a
→

 and b
→

 if | |a
→

 × b
→

 = a
→

. b
→

  

 (6) If | |a
→

 = 2, | |b
→

 = 7 and a
→

 × b
→

 = 3 i
→

 − 2 j
→

 + 6 k
→

 find the angle 

between a
→

 and b
→

. 

 (7) If a
→

 = i
→

 + 3 j
→

 − 2 k
→

  and  b
→

 = − i
→

 + 3 k
→

 then find a
→

 × b
→

. Verify 

that a
→

 and b
→

 are perpendicular to a
→

 × b
→

 separately.  

 (8) For any three vectors a
→

, b
→

, c
→

 show that  

  a
→

 × ( )b
→

 + c
→

 + b
→

 × ( )c
→

 + a
→

 + c
→

 × ( )a
→

 + b
→

 = 0
→

 

 (9) Let a
→

, b
→

, c
→

 be unit vectors such that a
→

 . b
→

 = a
→

 . c
→

 = 0 and the angle 

between b
→

 and c
→

 is 
π
6 . Prove that a

→
 = ± 2( )b

→
 × c
→
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 (10) If a
→

 × b
→

 = c
→

 × d
→

  and a
→

 × c
→

 = b
→

 × d
→

,  

   show that a
→

 − d
→

 and  b
→

 − c
→

 are parallel. 

2.4.4  Geometrical applications of cross product : 

Example 2.26 :   Prove that the area of a quadrilateral ABCD is 
1
2   AC

→
 × BD

→
  

where AC and BD are its diagonals. 

Solution : 

 

Vector Area of

quadrilateral ABCD   = Vector area of ∆ABC + Vector area of ∆ACD 

 = 
1
2  AB

→
 × AC

→
 + 

1
2  AC

→
 × AD

→
 

 = − 
1
2  AC

→
 × AB

→
 + 

1
2  AC

→
 × AD

→
 

 = 
1
2 AC
→

 ×  − AB
→

 + AD
→

 

 = 
1
2 AC
→

 ×  BA
→

 + AD
→

 

 = 
1
2 AC
→

 × BD
→

   

 
 
 
 
 
 
 

Fig. 2.17 

 The area of the quadrilateral ABCD = 
1
2  AC

→
 × BD

→
 

Deduction : 

 Area of a parallelogram = 
1
2   d

→
1 × d

→
2 , where d

→
1 and d

→
2 are the 

diagonals. 

Example 2.27 :   

 If a
→

, b
→

, c
→

 are the position vectors of the vertices A, B, C of a  
triangle ABC, then prove that the area of triangle ABC is  
1
2| |a
→

 × b
→

 + b
→

 × c
→

 + c
→

 × a
→

Deduce the condition for points a
→

, b
→

, c
→

 to be 

collinear. 

A B

C

D

A B

C

D
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Solution :  Area of ∆ ABC =
1
2  AB

→
 × AC

→
 

 Now AB
→

 = OB
→

 − OA
→

 = b
→

 − a
→

  

 and AC
→

 = OC
→

 − OA
→

 = c
→

 − a
→

 

  Hence, area of ∆ABC = 
1
2  AB

→
 × AC

→
 = 

1
2  ( )b

→
 − a
→

 × ( )c
→

 − a
→

 

   = 
1
2  | |b

→
 × c
→

 − b
→

 × a
→

 − a
→

 × c
→

 + a
→

 × a
→

 

   = 
1
2  | |b

→
 × c
→

 + a
→

 × b
→

 + c
→

 × a
→

 

  Area of ∆ABC = 
1
2  | |a

→
 × b
→

 + b
→

 × c
→

 + c
→

 × a
→

 

 If the points A, B, C are collinear, then the area of ∆ABC = 0 

  ⇒  
1
2 | |a

→
 × b
→

 + b
→

 × c
→

 + c
→

 × a
→

 = 0 

  ⇒  | |a
→

 × b
→

 + b
→

 × c
→

 + c
→

 × a
→

 = 0 

  (or)  a
→

 × b
→

  +  b
→

 × c
→

  +  c
→

 × a
→

 = 0
→

 

 Thus a
→

 × b
→

  + b
→

 × c
→

  +  c
→

 × a
→

 = 0
→

 is the required condition of 

collinearity of the points with positions a
→

, b
→

, c
→

  . 

Example 2.28 :   With usual notation prove that 
a

sin A = 
b

sin B = 
c

sin C  

Solution :Let BC
→

 = a
→

,   CA
→

 = b
→

,    AB
→

 = c
→

 

 By the area property of triangles 
1
2  | |a

→
 × b
→

 = 
1
2  | |b

→
 × c
→

 = 
1
2  | |c

→
 × a
→

 

⇒  | |a
→

 × b
→

= | |b
→

 × c
→

 = | |c
→

 × a
→

 
ab sin (π−C) = bc sin(π−A) = ca sin (π−B) 
⇒  ab sinC = bc sinA  =  ca sinB 
Divide by abc 

 
sinC

c  = 
sinA

a   =  
sin B

b  

 

 
 
 
 
 
 
 

Fig. 2.18 

a

b

A

C
B

c

π - A

π - B

π - C

aa

bb

A

C
B

cc

π - A

π - B

π - C
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 Take the reciprocals,      
a

sin A =
b

sin B   =  
c

sin C  

Example 2.29 :  Prove that sin(A + B) = sinA cosB + cosA sinB 
Solution : 
 Take the points P and Q on the 
unit circle with centre at the origin 
O. Assume that OP and OQ make 
angles A and B with x-axis 
respectively. 

∴ POQ  = POx  + QOx  = A + B 

 
 
 
 
 

 

Fig. 2.19 

 Clearly the coordinates of  P and Q are (cosA, sinA) and  (cosB, − sinB). 

 Take the unit vectors i
→

 and j
→

 along x and y axes respectively. 

  OP
→

 = OM
→

 + MP
→

 =  cos A i
→

 + sin A j
→

 

  OQ
→

 = ON
→

 + NQ
→

 = cos B i
→

 + sin B( )− j
→

   ‡  NQ
→

 = sinB 

   = cos B i
→

 −sin B j
→

 

  OQ
→

 × OP
→

 =  OQ
→

   OP
→

 sin (A + B) k
→

  =  sin (A + B) k
→

                … (1) 

  OQ
→

 × OP
→

 = 







i

→
   j
→

   k
→

cosB   − sinB    0

cosA    sinA    0

 = k
→

 [sinA cosB + cosA sinB] …(2) 

 From (1) and (2) 

  sin (A + B) = sinA cosB + cosA sinB 

Example 2.30 :  Show that the area of a parallelogram having diagonals  

3 i
→

 + j
→

 − 2 k
→

 and i
→

 − 3 j
→

 + 4 k
→

 is 5 3. 

Solution :  Let d
→

1= 3 i
→

 + j
→

 − 2 k
→

   and  d
→

2 = i
→

 − 3 j
→

 + 4 k
→

  

  Area of the parallelogram = 
1
2  d

→
1 × d

→
2  

Q
(C

os
B

, -
Si

n 
B
)

(Cos A, Sin A)
P

O

M NA

B
X

Y

Q
(C

os
B

, -
Si

n 
B
)

(Cos A, Sin A)
P

O

M NA

B
X

Y
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  d
→

1 × d
→

2 = 







i

→
   j
→

   k
→

3    1    − 2

1    −3    4

 = − 2 i
→

 − 14 j
→

 − 10 k
→

 

  ⇒   d
→

1 × d
→

2  = (− 2)2 + (− 14)2 + (− 10)2 

   = 300  = 10 3 

  Area of the parallelogram = 
1
2  d

→
1 × d

→
2 = 

1
2 10 3 = 5 3 sq. units 

2.4.5  Applications of Vector Product in Physics 
The moment of a force about a point : 

 Let a force F
→

 be applied  at a point 
P of a rigid body. Then the moment of 

force F
→

 about a point O measures the 

tendency (amount) of F
→

 to turn the 
body about point O. If this tendency of 
rotation about O is in anti-clockwise 
direction the moment is positive, 
otherwise it is negative. 

 
 
 
 
 
 
 

Fig. 2.20 

 Let F
→

 be the force and P be a point on the line of action of F
→

. Let r
→

 be 
the position vector of P relative to O. 

 The magnitude of the moment of the force F
→

 about O is the product of the 

magnitude of F
→

 and the length of the perpendicular from O to the line of action 
of the force. 

  ∴ Magnitude of the moment =  F
→

 (ON) 
 In right angled triangle ONP 

  sinθ = 
ON
OP = 

ON

 | |r
→

 

  | |r
→

 sin θ = ON 

F

r

N

O

P

r Fx

θ

θ FF

rr

N

O

P

r Fxr r FFx

θ

θ
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  ∴ Magnitude of the moment =  F
→

 (ON) 

   = | |r
→

  F
→

 sin θ 

   =  r
→

 × F
→

 

 ∴ Moment (or) Torque of force F
→

 about the point O is defined as the 

vector M
→

 = r
→

 × F
→

 
Example 2.31 :   

 A force given by 3 i
→

 + 2 j
→

 − 4 k
→

 is applied at the point  
(1, − 1, 2). Find the moment of the force about the point (2, − 1, 3). 
Solution : 
 We have 

  F
→

 = 3 i
→

 + 2 j
→

 − 4 k
→

  

  OP
→

 = i
→

 − j
→

 + 2 k
→

 

  OA
→

 = 2 i
→

 − j
→

 + 3 k
→

 

 
 
 
 
 

Fig. 2.21 

   r
→

 = AP
→

 = OP
→

 − OA
→

 

    = ( )i
→

 − j
→

 + 2 k
→

 − ( )2 i
→

 − j
→

 + 3 k
→

 

   r
→

 = − i
→

 − k
→

 

 The moment M
→

 of the force F
→

 about the point A is given by 

   M
→

 = r
→

 × F
→

 = 







i

→
   j
→

   k
→

− 1    0    − 1

3    2    − 4

 = 2 i
→

 − 7 j
→

 − 2 k
→

  

EXERCISE 2.4 
  (1) Find the area of parallelogram ABCD whose vertices are  

  A(− 5, 2, 5), B(− 3, 6, 7), C(4, − 1, 5)  and D(2, − 5, 3) 
 (2) Find the area of the parallelogram whose diagonals are represented by 

2 i
→

 + 3 j
→

 + 6 k
→

 and 3 i
→

 − 6 j
→

 + 2 k
→

 

r

F

A(2,-1,3)

P(1,-1,2)

rr

FF

A(2,-1,3)

P(1,-1,2)
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 (3) Find the area of the parallelogram determined by the sides  

  i
→

 + 2 j
→

 + 3 k
→

 and − 3 i
→

 − 2 j
→

 + k
→

 

 (4) Find the area of the triangle whose vertices are (3, − 1, 2), (1, − 1, − 3) 
and (4, − 3, 1) 

 (5) Prove by vector method that the parallelograms on the same base and 
between the same parallels are equal in area. 

 (6) Prove that twice the area of a parallelogram is equal to the area of another 
parallelogram formed by taking as its adjacent sides the diagonals of the 
former parallelogram. 

 (7) Prove that sin (A − B) = sin A cos B − cos A sin B. 

  (8) Forces 2 i
→

 + 7 j
→

, 2 i
→

 − 5 j
→

 + 6 k
→

, − i
→

 + 2 j
→

 − k
→

 act at a point P 

whose position vector is 4 i
→

 − 3 j
→

 − 2 k
→

 . Find the moment of the 
resultant of three forces acting at P about the point Q whose position 

vector is 6 i
→

 + j
→

 − 3 k
→

 . 

 (9) Show that torque about the point A(3, − 1, 3) of a force 4 i
→

 + 2 j
→

 + k
→

 

through the point B(5, 2, 4) is i
→

 + 2 j
→

 − 8 k
→

. 

 (10) Find the magnitude and direction cosines of the moment about the point 

(1, − 2, 3) of a force 2 i
→

 + 3 j
→

 + 6 k
→

 whose line of action passes through 
the origin. 

2.5 Product of three vectors : 

 Let a
→

, b
→

, c
→

 be three vectors. By inserting dot and cross between  

a
→

, b
→

, c
→

 in the same alphabetical order we introduce the following : 

 ( )a
→

 . b
→

 . c
→

  ,   ( )a
→

 . b
→

 × c
→

,  ( )a
→

 × b
→

 . c
→

 and ( )a
→

 × b
→

 × c
→

 

Consider ( )a
→

 . b
→

 . c
→

  

 Here a
→

 . b
→

 is a scalar quantity and dot product is not defined between a 

scalar and vector quantity. Therefore ( )a
→

 . b
→

 . c
→

 is not meaningful. 

 Similary ( )a
→

 . b
→

 × c
→

 is not meaningful. 
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 But ( )a
→

 × b
→

 . c
→

 is meaningful, because a
→

 × b
→

 is a vector and  

( )a
→

 × b
→

 . c
→

 is the dot product between the vectors a
→

 × b
→

  and c
→

 . 

 Similarly ( )a
→

 × b
→

 × c
→

  is meaningful. 

2.5.1 Scalar Triple Product : 

 Let a
→

, b
→

, c
→

 be three vectors. Then the product ( )a
→

 × b
→

 . c
→

 is called a 
scalar triple product. 

Geometrical Interpretation of Scalar Triple Product : 

 Let a
→

, b
→

, c
→

 be three non-coplanar vectors. Consider a parallelopiped 

having co-terminus edges OA, OB and OC such that OA
→

 = a
→

, OB
→

 = b
→

 and  

OC
→

 = c
→

 . 

 Then a
→

 × b
→

 is a vector 
perpendicular to the plane 

containing a
→

 and b
→

. 

 Let φ be the angle between 

c
→

 and a
→

 × b
→

 . 

 
 
 
 
 
 

Fig. 2.22 
 Let CL be perpendicular to the base OADB.  Here CL is the height of the 
parallelopiped. 

 Here CL and a
→

 × b
→

 are perpendicular to the same plane 

 ⇒  CL is parallel to a
→

 × b
→

 .   ⇒  OCL  = φ 

 In right angled triangle OLC,   CL = | |c
→

 cos φ 

 ∴ Height of the paralleopiped CL = | |c
→

 cos φ 

  Base area of the parallelopiped = 


Area of the parallelogram

with a
→

 and b
→

 as adjacent sides 
 

  Base area of the parallelopiped = | |a
→

 × b
→

 

a

b

O

c

a bx

ϕ

A

D

G

B
C

F

L

E

ϕ

aa

bb

O

cc

a bxa a bbx

ϕ

A

D

G

B
C

F

L

E

ϕ
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 Now, ( )a
→

 × b
→

 . c
→

 = | |a
→

 × b
→

 | |c
→

 cos φ  

   = [base area]   [height] 

  ( )a
→

 × b
→

 . c
→

 = 


Volume of the parallelopiped with

co-terminous edges a
→

 , b
→

 , c
→

 
 

 Thus, the scalar triple product ( )a
→

 × b
→

 . c
→

 represents the volume of the 

paralleopiped whose co-terminous edges a
→

, b
→

, c
→

 form a right handed system 
of vectors. 

2.5.2 Properties of Scalar Triple Product : 
Property (1) : 

 ( )a
→

 × b
→

 . c
→

 = ( )b
→

 × c
→

 . a
→

 = ( )c
→

 × a
→

 . b
→

    [Cyclic order] 

Proof : 

 Let a
→

, b
→

, c
→

 represent the co-terminous edges of a parallelopiped such 
that they form a right handed system. Then the volume V of the parallelopiped 

is given by V = ( )a
→

 × b
→

 . c
→

 

 Clearly b
→

, c
→

, a
→

 as well as c
→

, a
→

, b
→

form a right handed system of 
vectors and represent the co-terminous edges of the same parallelopiped. 

 ∴ V = ( )b
→

 × c
→

 . a
→

 and V = ( )c
→

 × a
→

 . b
→

 

 ∴V = ( )a
→

 × b
→

 . c
→

 = ( )b
→

 × c
→

 . a
→

 = ( )c
→

 × a
→

 . b
→

 … (1) 
 Since dot product is commutative (1) gives 

  V = c
→

 . ( )a
→

 × b
→

 = a
→

.( )b
→

 × c
→

 = b
→

 . ( )c
→

 × a
→

 … (2) 
 From (1) and (2) 

  ( )a
→

 × b
→

 . c
→

 = a
→

 . ( )b
→

 × c
→

 
 The dot and cross are interchangeable in a scalar triple product.  
 In view of this property, the scalar triple product is written in the following 
notation. 

  ( )a
→

 × b
→

 . c
→

 = a
→

 . ( )b
→

 × c
→

 = [ ]a
→

  b
→

 c
→

 

  ∴ [ ]a
→

 ,  b
→

 , c
→

 = [ ]b
→

 c
→

  a
→

 = [ ]c
→

  a
→

  b
→

 



 81

Property (2) : 
 The change of cyclic order of vectors in scalar triple product changes the 
sign of the scalar triple product but not the magnitude. 

 (i.e.) [ ]a
→

  b
→

 c
→

 = − [ ]b
→

  a
→

  c
→

 = − [ ]c
→

  b
→

  a
→

 = − [ ]a
→

  c
→

  b
→

 
Proof : 

 We have [ ]a
→

  b
→

 c
→

 = ( )a
→

 × b
→

 . c
→

 

   = − ( )b
→

 × a
→

 . c
→

  Q a
→

 × b
→

 = − b
→

 × a
→

 

  [ ]a
→
,  b
→
, c
→

 = − [ ]b
→

  a
→

  c
→

 … (1) 
 Similarly we can prove other results. 
Property (3) : The scalar triple product of three vector is zero if any two of 
them are equal. 

Proof :  Let a
→

 , b
→

, c
→

 be three vectors. 

When a
→

 = b
→

,  

  [ ]a
→

  b
→

 c
→

 = ( )a
→

 × b
→

 . c
→

 = ( )b
→

 × b
→

. c
→

 

   = o
→

 . c
→

  = 0       Q  b
→

 × b
→

= o
→

 

 Similarly we can prove for b
→

 = c
→

 and for c
→

 = a
→

 

Property (4) : 

  For any three vectors a
→

 , b
→

, c
→

  and scalar [ ]λ a
→

  b
→

 c
→

 = λ [ ]a
→

  b
→

 c
→

 

Proof :   [ ]λ a
→

  b
→

 c
→

 = ( )λ a
→

 × b
→

 . c
→

  = λ ( )a
→

 × b
→

 . c
→

 

   = λ [ ]a
→

  b
→

 c
→

 

Property (5) : 
 The scalar triple product of three vectors is zero if any two of them are 
parallel or collinear. 

Proof :  Let a
→

 , b
→

, c
→

  be three vectors such that a
→

 is parallel or collinear to 

b
→

 .  Then a
→

 = λ b
→

 for some scalar λ. 

  [ ]a
→

  b
→

 c
→

 = [ ]λ b
→

  b
→

 c
→

 = λ (0)  = 0 
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Property (6)  (without proof) : 
 The necessary and sufficient condition for three non-zero, non-collinear 

vectors a
→

 , b
→

, c
→

  to be coplanar is [ ]a
→

  b
→

 c
→

 = 0 

 i.e.,   a
→

 , b
→

, c
→

 are coplanar  ⇔  [ ]a
→

  b
→

 c
→

 = 0 

Note : Three possibilities for [ ]a
→

  b
→

 c
→

 to be zero are 

 (i) atleast one of the vectors a
→

, b
→

, c
→

  is a zero vector. 

 (ii) any two of the vectors a
→

, b
→

, c
→

  are parallel. 

 (iii) The vector a
→

, b
→

, c
→

 are co-planar. 
 But for cases (i) and (ii), the case (iii) is trivially true. 
Result : 
 Scalar Triple Product in terms of components : 

 Let a
→

 = a1 i
→

 + a2 j
→

 + a3 k
→

,    b
→

 = b1 i
→

 + b2 j
→

 + b3 k
→

,    

      c
→

 = c1 i
→

 + c2 j
→

 + c3 k
→

,    

 Then  [ ]a
→

  b
→

 c
→

 = 







a1   a2   a3

b1   b2   b3

c1   c2   c3

 

Proof : We have a
→

 × b
→

 = 





i

→
   j
→

   k
→

a1   a2   a3

b1   b2   b3

 

    = (a2b3 − a3b2) i
→
−(a1b3 − a3b1) j

→
 + (a1b2 − a2b1) k

→
 

 ∴ [ ]a
→
,  b
→
, c
→

 = ( )a
→

 × b
→

 . c
→

  =  ( )a
→

 × b
→

 .  c1 i
→

 + c2 j
→

 + c3 k
→

 

   = (a2b3 − a3b2) c1 − (a1b3 − a3b1)c2 + (a1b2 − a2b1)c3 

   = 







a1   a2   a3

b1   b2   b3

c1   c2   c3
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Distributivity of Cross product over Vector addition : 
Result : 

 For any three vectors a
→

, b
→

, c
→

   

 we have a
→

 × ( )b
→

 + c
→

 = a
→

 × b
→

 + a
→

 × c
→

 

 This can be proved by determinant form of cross product. 

Example 2.32 : If the edges a
→

 = − 3 i
→

 + 7 j
→

 + 5 k
→

,  b
→

 = − 5 i
→

 + 7 j
→

 − 3 k
→

   

           c
→

 = 7 i
→

 − 5 j
→

 − 3 k
→

 meet at a vertex, find the volume of the 
parallelopiped. 
Solution : 

 Volume of the parallelopiped = [ ]a
→
,  b
→
, c
→

 

  = 







− 3    7    5

− 5    7    − 3

7    − 5   − 3

 = − 264 

 The volume cannot be negative 

 ∴ Volume of parallelopiped = 264 cu. units. 
Note : Box product may be negative. 

Example 2.33 :  For any three vectors a
→

  b
→

 c
→

 prove that 

  [ ]a
→

 + b
→
,   b
→

 + c
→
,   c
→

 + a
→

 = 2 [ ]a
→

  b
→

 c
→

 

Solution :  [ ]a
→

 + b
→
,   b
→

 + c
→
,   c
→

 + a
→

 

  = 



( )a

→
 + b
→

 × ( )b
→

 + c
→

  . ( )c
→

 + a
→

 

  = 



( )a

→
 × b
→

 + ( )a
→

 × c
→

  + ( )b
→

 × b
→

 + ( )b
→

 × c
→

 . ( )c
→

 + a
→

 

  = { }a
→

 × b
→

 +   a
→

 × c
→

 +   b
→

 × c
→

 . ( )c
→

 + a
→

    

  = ( )a
→

 × b
→

 . c
→

  + ( )a
→

 × c
→

 . c
→

+ ( )b
→

 × c
→

. c
→

 

                                          +  ( )a
→

 × b
→

 . a
→

 + ( )a
→

 × c
→

 . a
→

 + ( )b
→

 × c
→

. a
→

 

  = [ ]a
→

  b
→

 c
→

 + [ ]b
→

 c
→

 a
→

  =  2 [ ]a
→

  b
→

 c
→
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Example 2.34 :  If x
→

 . a
→

 = 0,  x
→

 . b
→

 = 0,  x
→

. c
→

 = 0 and x
→

 ≠ 0
→

 then show 

that  a
→

 , b
→

,  c
→

 are coplanar. 
Solution :  

 x
→

 . a
→

 = 0  and x
→

 . b
→

 = 0 implies a
→

 and b
→

 are ⊥r to x
→

 

 ∴ a
→

 × b
→

 is parallel to x
→

 

   ∴  x
→

 = λ( )a
→

 × b
→

 

   Now  x
→

. c
→

 = 0   ⇒  λ( )a
→

 × b
→

 . c
→

 = 0 ⇒  [ ]a
→

  b
→

 c
→

 = 0 

 ⇒  a
→

 , b
→

,  c
→

  are coplanar 

2.5.3 Vector Triple Product : 
Definition : 

 Let a
→

 , b
→

, c
→

 be any three vectors, then the product a
→

 × ( )b
→

 × c
→

 and 

( )a
→

 × b
→

  × c
→

 are called vector triple products of a
→

 , b
→

, c
→

  

Result : 

 For any three vectors a
→

 , b
→

, c
→

   

  ( )a
→

 × b
→

 × c
→

= ( )a
→

 . c
→

b
→

 − ( )b
→

 . c
→

a
→

 

 This result can be proved by taking a
→

 = a1 i
→

 +  a2 j
→

 +  a3 k
→

 ;   

 b
→

 = b1 i
→

 +  b2 j
→

 +  b3 k
→

 ; c
→

 = c1 i
→

 +  c2 j
→

 +  c3 k
→

 

Property (1) :  

 The vector triple product  ( )a
→

 × b
→

 × c
→

 is a linear combination of those 
two vectors which are within brackets. 
Property (2) :  

 The vector triple product  ( )a
→

 × b
→

 × c
→

 is perpendicular to c
→

 and lies in 

the plane which contains a
→

 and b
→

. 

Property (3) : 

 a
→

 ×  ( )b
→

 × c
→

 = ( )a
→

 . c
→

b
→

 − ( )a
→

 . b
→

c
→
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Example 2.35 :  If a
→

 × ( )b
→

 × c
→

 = ( )a
→

 × b
→

 × c
→

  then 

           Prove that ( )c
→

 × a
→

 × b
→

 = o
→

 

Proof :  Given :  a
→

 × ( )b
→

 × c
→

 = ( )a
→

 × b
→

 × c
→

   

   ( )a
→

 . c
→

  b
→

 − ( )a
→

 . b
→

 c
→

 = ( )a
→

 . c
→

  b
→

 − ( )b
→

. c
→

 a
→

 

   ⇒  ( )a
→

 . b
→

c
→

 = ( )b
→

. c
→

 a
→

 

   ⇒  ( )c
→

 . b
→

a
→

 − ( )a
→

 . b
→

c
→

 = 0
→

 

   ⇒      ( )c
→

 × a
→

 × b
→

 = 0
→

 

Example 2.36 :  If a
→

 = 3 i
→

 + 2 j
→

 − 4 k
→

,   b
→

 = 5 i
→

 − 3 j
→

 + 6 k
→

,    

c
→

 = 5 i
→

 − j
→

 + 2 k
→

, find   (i) a
→

 × ( )b
→

 × c
→

   (ii) ( )a
→

 × b
→

 × c
→

   
and show that they are not equal. 
Solution : 

(i)   b
→

 × c
→

 = 







i

→
   j
→

   k
→

5    − 3    6

5    − 1    2

 = 20 j
→

 + 10 k
→

 

  ∴  a
→

 × ( )b
→

 × c
→

= 







i

→
   j
→

   k
→

3    2    − 4

0    20    10

 = 100 i
→

 − 30 j
→

 + 60 k
→

 

(ii) a
→

 × b
→

 = 







i

→
   j
→

   k
→

3    2    − 4

5    − 3    6

  = − 38 j
→

 − 19 k
→

 

 ∴  ( )a
→

 × b
→

 × c
→

  = 







i

→
   j
→

   k
→

0    − 38   − 19

5    − 1    2

 = − 95 i
→

 − 95 j
→

 + 190 k
→

 

 From (i) and (ii) a
→

 × ( )b
→

 × c
→

 ≠ ( )a
→

 × b
→

 × c
→
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2.5.4 Vector product of four vectors ; 

 For the four vectors a
→

 , b
→

, c
→

, d
→

 the vector product of the two vectors 

( )a
→

 × b
→

 and ( )c
→

 × d
→

 namely ( )a
→

 × b
→

 × ( )c
→

 × d
→

 is called vector 
product of four vectors. 

Example 2.37 : Let a
→

 , b
→

, c
→

 and d
→

  be any four vectors then 

(i) ( )a
→

 × b
→

 × ( )c
→

 × d
→

 = [ ]a
→

  b
→

  d
→

 c
→

 − [ ]a
→

  b
→

  c
→

  d
→

 

(ii) ( )a
→

 × b
→

 × ( )c
→

 × d
→

 = [ ]a
→

  c
→

  d
→

  b
→

  −  [ ]b
→

  c
→

  d
→

 a
→

 

Solution : 

(i) ( )a
→

 × b
→

 × ( )c
→

 × d
→

 = x
→

 × ( )c
→

 × d
→

   where x
→

 = a
→

 × b
→

 

  = ( )x
→

 . d
→

 c
→

 − ( )x
→

 . c
→

 d
→

 

  = 



( )a

→
 × b
→

 . d
→

  c
→

 − 



( )a

→
 × b
→

 . c
→

 d
→

 

  = [ ]a
→

  b
→

 d
→

 c
→

 − [ ]a
→

  b
→

 c
→

 d
→

 

 Similarly we can prove other result by taking x
→

 = c
→

 × d
→

 

Note : (1) If the four vectors a
→

 , b
→

, c
→

, d
→

 are coplanar then 

   ( )a
→

 × b
→

 × ( )c
→

 × d
→

 = o
→

 . 

 (2) Let a
→

, b
→

 be lie on one plane and c
→

, d
→

 lie on another plane. 

These planes are perpendicular then ( )a
→

 × b
→

 . ( )c
→

 × d
→

 = o
→

 
Example 2.38 : 

 Prove that [ ]a
→

 × b
→
,   b
→

 × c
→
,   c
→

 × a
→

 =  [ ]a
→
,  b
→
, c
→ 2

 

Solution : 

 [ ]a
→

 × b
→
,   b
→

 × c
→
,   c
→

 × a
→

 = 



( )a

→
 × b
→

 × ( )b
→

 × c
→

  . ( )c
→

 × a
→

 

 = 



[ ]a

→
  b
→

 c
→

 b
→

 − [ ]a
→

  b
→

 b
→

  c
→

  . ( )c
→

 × a
→

 

 = [ ]a
→

  b
→

  c
→

 



b

→
 . ( )c

→
 × a
→

 since [ ]a
→

 b
→

 b
→

 = 0 
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 = [ ]a
→

  b
→

  c
→

  [ ]b
→

 c
→

 a
→

 

 = [ ]a
→

  b
→

  c
→

2

  since [ ]b
→

 c
→

 a
→

 = [ ]a
→

  b
→

  c
→

 
2.5.5 Scalar product of four vectors : 

 For four vectors a
→

 , b
→

, c
→

, d
→

 the scalar product of the two vectors 

namely a
→

 × b
→

 and c
→

 × d
→

 is called scalar product of four vectors. 

 i.e.  ( )a
→

 × b
→

 . ( )c
→

 × d
→

 

Result :  Determinant form of ( )a
→

 × b
→

 . ( )c
→

 × d
→

  

 i.e.  ( )a
→

 × b
→

 . ( )c
→

 × d
→

 = 









a

→
. c
→

    a
→

. d
→

b
→

. c
→

   b
→

. d
→

  

Proof : 

 ( )a
→

 × b
→

 . ( )c
→

 × d
→

 = ( )a
→

 × b
→

 . x
→

   where x
→

 = c
→

 × d
→

 

   = a
→

. ( )b
→

 × x
→

   (interchange dot and cross) 

   = a
→

 .  b
→

 × ( )c
→

 × d
→

  

   = a
→

 .  ( )b
→

 . d
→

 c
→

 − ( )b
→

 . c
→

 d
→

 

   = ( )b
→

 . d
→

 ( )a
→

 . c
→

 − ( )b
→

 . c
→

 ( )a
→

 . d
→

 

   = 









a

→
. c
→

    a
→

. d
→

b
→

. c
→

   b
→

. d
→

  

EXERCISE 2.5 

 (1) Show that vectors a
→

 , b
→

, c
→

 are coplanar if and only if 

   a
→

 + b
→

,  b
→

 + c
→

,  c
→

 + a
→

 are coplanar. 
 (2) The volume of a parallelopiped whose edges are represented by  

  − 12 i
→

 + λ k
→

, 3 j
→

 − k
→

, 2 i
→

 + j
→

 − 15 k
→

 is 546. Find the value of λ.  

 (3) Prove that  [ ]a
→

  b
→

 c
→

 = abc if and only if  a
→

 , b
→

, c
→

  are mutually 
perpendicular. 
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 (4) Show that the points (1, 3, 1), (1, 1, − 1), (− 1, 1, 1) (2, 2, − 1) are lying 
on the same plane. (Hint : It is enough to prove any three vectors formed 
by these four points are coplanar). 

  (5) If a
→

 = 2 i
→

 + 3 j
→

 − k
→

,      b
→

 = − 2 i
→

 + 5 k
→

,   c
→

 = j
→

 − 3 k
→

 

         Verify that a
→
×( )b

→
× c
→

=( )a
→

 . c
→

 b
→

  − ( )a
→

 . b
→

 c
→

 

 (6) Prove that a
→

 × ( )b
→

 × c
→

 + b
→

 × ( )c
→

 × a
→

 + c
→

 × ( )a
→

 × b
→

 = o
→

 

 (7) If a
→

 = 2 i
→

 + 3 j
→

 − 5 k
→

,  b
→

 = − i
→

 + j
→

 + 2 k
→

 and  

  c
→

 = 4 i
→

 − 2 j
→

 + 3 k
→

 , show that ( )a
→

 × b
→

 × c
→

 ≠ a
→

 × ( )b
→

 × c
→

 

 (8) Prove that ( )a
→

 × b
→

 × c
→

 = a
→

 × ( )b
→

 × c
→

 iff  a
→

 and c
→

 are collinear. 
(where vector triple product is non-zero). 

 (9) For any vector a
→

  

  prove that i
→

 × ( )a
→

 × i
→

 + j
→

 × ( )a
→

 × j
→

 + k
→

 × ( )a
→

 × k
→

 = 2 a
→

 

  (10) Prove that ( )a
→

 × b
→

 . ( )c
→

 × d
→

 + ( )b
→

 × c
→

 . ( )a
→

 × d
→

 + ( )c
→

 × a
→

 . ( )b
→

 × d
→

 = 0 

 (11) Find ( )a
→

 × b
→

 . ( )c
→

 × d
→

 if a
→

 = i
→

 + j
→

 + k
→

 

  b
→

 = 2 i
→

 + k
→

, c
→

 = 2 i
→

 + j
→

 + k
→

,   d
→

 = i
→

 + j
→

 + 2 k
→

 

 (12) Verify ( )a
→

 × b
→

 × ( )c
→

 × d
→

 = [ ]a
→

  b
→

  d
→

 c
→

 − [ ]a
→

  b
→

  c
→

  d
→

 

  for a
→

 , b
→

 , c
→

 and d
→

 in problem 11. 

2.6  Lines : 
2.6.1 Equation of a line : 
Parametric and non parametric vector equations : 

 Let P be an any point with position vector r
→

 on the given line. A relation 

satisfied by r
→

 for all points on the line is then found using certain conditions. 
This relation is called the vector equation of the line. 
Parametric vector equations : 

 If r
→

 is expressed in terms of some fixed vectors and variable scalars, 
(parameters) the relation is then called a parametric vector equation. 
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Non-parametric vector equation : If no parameter is involved, the equation is 
called a non-parametric vector equation. 
Vector and Cartesian Equations of Straight lines : 
 A straight line is uniquely determined in space if 
 (i) a point on it and its direction are given 
 (ii) two points on it are given. 
 Note : Eventhough the syllabus does not require the derivations 

(2.6.2, 2.6.3) and it needs only the results, the equations are 
derived for better understanding the results. 

2.6.2 Equation of a straight line passing through a given point and 
parallel to a given vector : 
Vector form : 

 Let the line pass through a given point A whose position vector is a
→

 w.r.to 

O and parallel to the given vector v
→

 . Let P be any point on the line and its 

position vector w.r.to O be r
→

 . 

 We have OA
→

 = a
→

,  OP
→

 = r
→

 

 AP
→

  and v
→

 are parallel. 

  ∴ AP
→

 = t v
→

 for some scalar t 

  OP
→

  = OA
→

 + AP
→

 

  r
→

 = a
→

 + t v
→

 … (1) 

 
 
 
 
 
 

Fig. 2.23 

 This represents the vector equation of the given straight line. 

Note : r
→

 = a
→

 + t v
→

, where t is a variable scalar (i.e., a parameter) is the 
parametric vector equation of the line. 

Corollary : If the straight line is given to be passing through the origin, then 

the equation (1) becomes r
→

 = t v
→

 

Cartesian form : Let the co-ordinates of the fixed point A be (x1, y1, z1) and the 

direction ratios of the parallel vector be l, m, n. Then 

 a
→

 = x1 i
→

 + y1 j
→

 + z1 k
→

   ; v
→

 = l i
→

 + m j
→

 + n k
→

   

 r
→

 = x i
→

 + y j
→

 + z k
→

   

O

A

a

x

z

y

P

r

v

O

A

aa

x

z

y

P

rr

vv
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 r
→

 = a
→

+t v
→
⇒x i

→
 + y j

→
 + z k

→
 = x1 i

→
 + y1 j

→
 + z1 k

→
+ t ( )l i

→
 + m j

→
 + n k

→
  

 Equating the coefficients of i
→

, j
→

, k
→

  we get 
   x = x1 + tl 
   y = y1 + tm    
   z = z1 + tn 


These are the

parametric equations
 of the line

 

 ⇒  
x − x1

l    =  t,    
y − y1

m  =  t,      
z − z1

n  =  t 

Eliminating t, we get  
x − x1

l   =  
y − y1

m   =  
z − z1

n  

 This is the cartesian equation of the line passing through a point (x1, y1, z1) 

and parallel to a vector whose drs are l, m, n. 
Non-parametric vector equation : 

 AP
→

 = OP
→

 − OA
→

 = r
→

 − a
→

 

 But    AP
→

 | |  v
→

  ⇒   AP
→

 × v
→

 = 0
→

 

 ⇒    ( )r
→

 − a
→

 × v
→

 = 0
→

 

 ⇒   r
→

 × v
→

 − a
→

 × v
→

 = 0
→

 

 ⇒  r
→

 × v
→

 = a
→

 × v
→

 
 This is the non-parametric vector equation of the line. 
2.6.3 Equation of a straight line passing through two given points: 
Vector Form : 
 Let the line pass through two given points A and B whose position vectors 

are a
→

 and b
→

 respectively.  
 Let P be any point on the line and its 

position vector be  r
→

 
 We have  

  OA
→

 = a
→

, OB
→

 = b
→

 and OP
→

 = r
→

 

 AP
→

 and AB
→

 are parallel vectors. 

  ∴ AP
→

 = t AB
→

 for some scalar t 

 
 
 
 
 
 
 

Fig. 2.24 
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  =  t  OB
→

 − OA
→

 = t ( )b
→

 − a
→

    

 OP
→

  = OA
→

 + AP
→

 

 r
→

 = a
→

 + t( )b
→

 − a
→

   (or)  … (1) 

 r
→

 = (1 − t) a
→

 + t b
→

 
 This represents the vector equation of the given straight line. 

Note : r
→

 = (1 − t) a
→

 + t b
→

 where t is a variable scalar (i.e., a parameter) is the 
parametric vector equation of the required line. 
Cartesian form : 
       Let the co-ordinates of the fixed points A be (x1, y1, z1) and B be (x2, y2, z2) 

  a
→

 = x1 i
→

 + y1 j
→

 + z1 k
→

   ;  b
→

 = x2 i
→

 + y2 j
→

 + z2 k
→

  ;  r
→

 = x i
→

 + y j
→

 + z k
→

   

 Substituting these values in equation (1) we get 

   x i
→

 + y j
→

 + z k
→

  =  x1 i
→

 + y1 j
→

 + z1 k
→

  

+ t  x2 i
→

 + y2 j
→

 + z2 k
→

−  x1 i
→

 + y1 j
→

 + z1 k
→

  

 Equating the coefficients of i
→

, j
→

,  k
→

  

  x = x1 + t(x2 − x1) 

  y = y1 + t(y2 − y1)     

  z = z1 + t(z2 − z1) 


These are the

parametric equations
 of the line

 

 ⇒  
x − x1

x2 − x1
   =  t,    

y − y1

y2 − y1
 =  t,      

z − z1

z2 − z1
 =  t 

Eliminating t, we get 

 
x − x1

x2 − x1
   =  

y − y1

y2 − y1
  =  

z − z1

z2 − z1
 

 This is the cartesian equation of the required line. 

Note  : x2 − x1,  y2 − y1,  z2 − z1 are the d.r.s of the line joining the points  
(x1, y1, z1) and (x2, y2, z2) 

Non-parametric vector equation : 

   AB
→

 = OB
→

 − OA
→

 =  b
→

 − a
→
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   AP
→

 = OP
→

 − OA
→

 = r
→

 − a
→

 

 Since AP
→

 and AB
→

 are collinear vectors 

   ⇒  AP
→

 × AB
→

 = 0
→

 

   ⇒   ( )r
→

 − a
→

 × ( )b
→

 − a
→

 = 0
→

 
 This is the non parametric vector equation. 
2.6.4 Angle between two lines : 

 Let r
→

 = a
→

1 + t u
→

 and r
→

 = a
→

2 + s v
→

 

be the two lines in space. 
 These two lines are in the direction of 

u
→

 and v
→

. 
 “Angle between the two lines is 
defined as the angle between their 
directions”. 

 
 
 
 
 
 

Fig. 2.25 

 If θ is the angle between the given lines then θ = cos−1 









u

→
 . v
→

| |u
→ | |v

→
 

Cartesian form : If the equations of the lines are in Cartesian form 

   
x − x1

a1
   =  

y − y1
b1

 =  
z − z1

c1
 and   

x − x1
a2

   =  
y − y1

b2
 =  

z − z1
c2

  

 Where a1, b1,  c1 and a2,  b2, c2 are the direction ratios of two lines, then 

angle between them is 

     θ = cos−1 






a1a2 + b1b2 + c1c2

a1
2 + b1

2 + c1
2 a2

2 + b2
2 + c2

2
 

Note : When two lines are perpendicular then a1a2 + b1b2 + c1c2 = 0 

Example 2.39 : Find the vector and cartesian equations of the straight line 

passing through the point A with position vector   3 i
→

 − j
→

 + 4 k
→

 and parallel to 

the vector −  5 i
→

 + 7 j
→

 + 3 k
→

 
Solution :  We know that vector equation of the line through the point with 

position vector a
→

 and parallel to v
→

 is given by r
→

 = a
→

 + t v
→

 where t is a 
scalar. 

u

v
θ

r 
a1

t  u+
=

a2 s  v+r =

uu

vv
θ

r 
a1

t  u+
= a1

t  u+
=

a2 s  v+r = a2 s  v+r =
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   Here a
→

 = 3 i
→

 − j
→

 + 4 k
→

 

   v
→

 = −  5 i
→

 + 7 j
→

 + 3 k
→

 
 ∴ Vector equation of the line is 

   r
→

 = ( )3 i
→

 − j
→

 + 4 k
→

 + t( )−  5 i
→

 + 7 j
→

 + 3 k
→

 … (1) 
 The cartesian equation of the line passing through (x1, y1, z1) and parallel 

to a vector whose d.r.s are l, m, n is 

   
x − x1

l   = 
y − y1

m  =  
z − z1

n   

 Here (x1, y1, z1) = (3, − 1, 4) 

   (l, m, n) = (− 5, 7, 3) 

 ∴ The required equation is 
x − 3
− 5

 = 
y + 1

7  = 
z − 4

3  

Example 2.40 : Find the vector and cartesian equations of the straight line 
passing through the points (− 5, 2, 3) and (4, − 3, 6) 
Solution :  Vector equation of the straight line passing through two points with 

position vectors a
→

 and b
→

 is given by 

    r
→

 = a
→

 + t( )b
→

 − a
→

 

 Here a
→

 = − 5 i
→

 + 2 j
→

 + 3 k
→

 

   b
→

 = 4 i
→

 − 3 j
→

 + 6 k
→

 

   b
→

 − a
→

 = 9 i
→

 − 5 j
→

 + 3 k
→

 
∴ Vector equation of the line is  

 r
→

 = ( )− 5 i
→

 + 2 j
→

 + 3 k
→

 + t( )9 i
→

 − 5 j
→

 + 3 k
→

 or 

 r
→

 = (1 − t) ( )− 5 i
→

 + 2 j
→

 + 3 k
→

 + t( )4 i
→

 − 3 j
→

 + 6 k
→

  
Cartesian Form : 
 The required equation is 

  
x − x1

x2 − x1
   =  

y − y1

y2 − y1
  =  

z − z1

z2 − z1
 

 Here    (x1, y1, z1) = (− 5, 2, 3)  ;   (x2, y2, z2) = (4, − 3, 6) 

  ∴  
x + 5

9   =  
y − 2
− 5

  =  
z − 3

3  is the cartesian equation of the line 
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Example 2.41 : Find the angle between the lines  

r
→

 = 3 i
→

 + 2 j
→

 − k
→

 + t ( )i
→

 + 2 j
→

 + 2 k
→

 and 

r
→

 = 5 j
→

 + 2 k
→

 + s ( )3 i
→

+ 2 j
→

 + 6 k
→

 

Solution :  Let the given lines be in the direction of u
→

 and v
→

 

 Then u
→

 = i
→

 + 2 j
→

 + 2 k
→

,  v
→

 = 3 i
→

 + 2 j
→

 + 6 k
→

 
 Let θ be the angle between the given lines 

 ∴ cos θ =  









u

→
 . v
→

| |u
→ | |v

→
 

 u
→

 . v
→

 = 19  ;  | |u
→

 = 3  ;  | |v
→

 = 7 

 cos θ = 
19
21     ⇒ θ =  cos−1 



19

21  

EXERCISE 2.6 
  (1) Find the d.c.s of a vector whose direction ratios are 2, 3, − 6. 
 (2) (i) Can a vector have direction angles 30°, 45°, 60°. 
  (ii) Can a vector have direction angles 45°, 60°, 120°? 
 (3) What are the d.c.s of the vector equally inclined to the axes? 

 (4) A vector r
→

 has length 35 2 and direction ratios (3, 4, 5) , find the 

direction cosines and components of r
→

 . 
 (5) Find direction cosines of the line joining (2, − 3, 1) and (3, 1, − 2). 
 (6) Find the vector and cartesian equation of the line through the point  

(3, − 4, − 2) and parallel to the vector 9 i
→

 + 6 j
→

 + 2 k
→

. 
 (7) Find the vector and cartesian equation of the line joining the points  

(1, − 2, 1) and (0, − 2, 3). 
 (8) Find the angle between the following lines. 

  
x − 1

2   =  
y + 1

3   =  
z − 4

6   and x + 1 = 
y + 2

2   =  
z − 4

2  

 (9) Find the angle between the lines  

  r
→

 = 5 i
→

 − 7 j
→

 + µ( )− i
→

 + 4 j
→

 + 2 k
→

 

  r
→

 = − 2 i
→

 + k
→

 + λ( )3 i
→

 + 4 k
→
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2.6.5 Skew lines 
 Consider two straight lines in the space. There are three possibilities. 
 (i) either they are intersecting 
 (ii) (or) parallel 
 (iii) (or) neither intersecting nor 
parallel 
 Two lines in space which are 
either intersecting or parallel are 
called coplanar lines. 
 i.e.,  a plane can be defined 
passing through (the two lines 
completely lie on the plane) two 
intersecting lines or through two 
parallel lines. 

 

 

 

 

 

 

 

Fig. 2.26 

 Therefore, two lines lie on the same plane are called coplanar lines. 

 Two lines L1 and L2  in space, which are neither intersecting nor parallel 

are called skew lines. (See Fig. 2.26) 

 i.e., two lines in space which are not coplanar are called skew lines. 

Shortest distance between two lines 

(i) Trivially the shortest distance between two intersecting lines is zero. 

(ii) Parallel lines 

 Theorem : (without proof) The distance between two parallel lines 

  r
→

 = a
→

1 + t u
→

  ;  r
→

 = a
→

2 + s u
→

 is given by 

    d = 
 u
→

 ×  a
→

2 − a
→

1

| |u
→

 

(iii) Skew lines : 
 Theorem : (without proof)  The distance between the skew lines  

 r
→

 = a
→

1 + t u
→

  ;  r
→

 = a
→

2 + s v
→

 is given by 

    d = 
   a

→
2 − a

→
1  u
→

 v
→

 | |u
→

 × v
→

  

L1

L2

B

A

d

L1

L2

B

A

d
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Condition for two lines to intersect : 
 The shortest distance between the intersecting lines  

 r
→

 = a
→

1 + t u
→

 ;  r
→

 = a
→

2 + s v
→

  is  0 

 The condition for intersecting is d = 0  ⇒    a
→

2 − a
→

1  u
→

 v
→

 = 0   (or) 

 







x2 − x1   y2 − y1   z2 − z1

l1    m1    n1

l2    m2    n2

 = 0  if 

 (x1, y1, z1)and (x2, y2, z2) are the points whose position vectors are a
→

1 and 

a
→

2  and l1, m1, n1 ;  l2, m2, n2 are the  d.rs of the vectors u
→

 and v
→

 

respectively. ( u
→

 and v
→

 are not parallel) 
Example 2.42 :  Find the shortest distance between the parallel lines  

 r
→

 = ( )i
→

 − j
→

+ t( )2 i
→

 − j
→

 + k
→

 and 

   r
→

 = ( )2 i
→

 + j
→

 + k
→

 + s( )2 i
→

 − j
→

 + k
→

 

Solution : Compare the given equations with r
→

= a
→

1 + t u
→

 and r
→

 = a
→

2 + s u
→

, 

 a
→

1 = i
→

 − j
→

 ; a
→

2 = 2 i
→

 + j
→

 + k
→

   and u
→

 = 2 i
→

 − j
→

 + k
→

 

  a
→

2 − a
→

1 = i
→

 + 2 j
→

 + k
→

 

  u
→

 ×  a
→

2 − a
→

1  = 







i

→
   j
→

   k
→

2    − 1    1

1    2    1

 =  − 3 i
→

 − j
→

 + 5 k
→

 

   u
→

 ×  a
→

2 − a
→

1  = 9 + 1 + 25  =  35 

  | |u
→

 = 4 + 1 + 1  = 6  

  

The distance between

the parallel lines  = 
 u
→

 ×  a
→

2 − a
→

1

| |u
→

 = 
35
6
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Note : If the equations are in the Cartesian form, write in the vector form and 
find the distance between them. 

Example 2.43 :  Show that the two lines r
→

 = ( )i
→

 − j
→

 + t( )2 i
→

 + k
→

  and 

r
→

= ( )2 i
→

 − j
→

+s( )i
→

 + j
→
− k
→

 are skew lines and find the distance between 
them. 

Solution : Compare the given equations with r
→

 = a
→

1 + t u
→

 and r
→

 = a
→

2 + s v
→

 

 a
→

1 = i
→

 − j
→

 ; a
→

2 = 2 i
→

 − j
→

 and u
→

 = 2 i
→

 + k
→

;  v
→

= i
→

 + j
→

 − k
→

 

  a
→

2 − a
→

1 = i
→

  

    a
→

2 − a
→

1  u
→

 v
→

 = 









1   0    0

2   0    1

1   1   − 1

 = − 1 ≠ 0 

 ∴ They are skew lines. 

  u
→

 × v
→

 = 







i

→
   j
→

   k
→

2    0    1

1    1    − 1

 =  − i
→

 + 3 j
→

 + 2 k
→

 

  | |u
→

 × v
→

 = 14 

 Shortest distance between the lines = 
   a

→
2 − a

→
1  u
→

 v
→

| |u
→

 × v
→

 
 … (1) 

 From (1) shortest distance between them is 
1
14

  

Example 2.44 :  Show that the lines 
x − 1

3  = 
y − 1
− 1

 = 
z + 1

0  and 
x − 4

2  = 
y
0 = 

z + 1
3  

intersect and hence find the point of intersection. 
Solution : The condition for intersecting is 

  







x2 − x1   y2 − y1   z2 − z1

l1    m1    n1

l2    m2    n2

 = 0 
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 Compare with  
x − x1

l1
  =  

y − y1
m1

  =  
z− z1

n1
  and 

x − x2
l2

 = 
y − y2

m2
 = 

z − z2
n2

 , we 

get  
  (x1, y1, z1) = (1, 1, − 1)  ;  (x2, y2, z2)  =  (4, 0, − 1) 

  (l1, m1, n1) = (3, − 1, 0)  ;  (l2, m2, n2) = (2, 0, 3) 

 The determinant becomes 

  







3   − 1   0

3   − 1   0

2    0    3

 = 0.  Note that u
→

 and v
→

 are not parallel. 

 ∴ The lines are intersecting lines. 
Point of intersection : 

 Take 
x − 1

3   =  
y − 1
− 1

 = 
z + 1

0  = λ 

 ∴ Any point on the line is of the form (3λ + 1, − λ + 1, − 1) 

 Take 
x − 4

2   =  
y
0 = 

z + 1
3  = µ 

 Any point on this line is of the form (2µ + 4,  0,  3µ − 1) 

 Since they are intersecting, for some λ, µ 

 (3λ + 1,  − λ + 1, − 1) = (2µ + 4, 0, 3µ − 1) ⇒ λ = 1 and µ  = 0 

 To find the point of intersection either take λ = 1  or µ = 0 

 ∴ The point of intersection is (4, 0, − 1). 

Note : If the two lines are in the vector form convert into cartesian form and do 
it. 

Example 2.45 :  Find the shortest distance between the skew lines 

  r
→

 = ( )i
→

 − j
→

 + λ( )2 i
→

 + j
→

 + k
→

  and 

  r
→

 =  ( )i
→

 + j
→

 − k
→

 + µ( )2 i
→

 − j
→

 − k
→

  

Solution : 

 Compare the given equation with r
→

 = a
→

1 + t u
→

 and r
→

 = a
→

2 + s v
→

, 

 a
→

1 = i
→

 − j
→

 ; a
→

2 = i
→

 + j
→
− k
→

 ; u
→

 = 2 i
→

 + j
→

 + k
→

 ; 

   v
→

= 2 i
→

 −  j
→

 − k
→
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  a
→

2 − a
→

1 = 2 j
→

 − k
→

  and u
→

 × v
→

 = 4 j
→

 − 4 k
→

 

    a
→

2 − a
→

1  u
→

 v
→

 = 







0    2    − 1

2    1    1

2   − 1   − 1

 = 12 

  | |u
→

 × v
→

 = 4 2 

 distance = 
   a

→
2 − a

→
1  u
→

 v
→

| |u
→

 × v
→

 
 = 

12
4 2

 = 
3
2

 

2.6.7 Collinearity of three points : 
Theorem (without proof) : 

 Three points A, B and C with position vectors a
→

, b
→

 and c
→

 respectively 
are collinear if and only if there exists scalars λ1, λ2, λ3, not all zeros such that  

 λ1 a
→

 + λ2 b
→

 + λ3 c
→

 = o
→

 and λ1 + λ2 + λ3 = 0  

Working rule to find the collinearity : 
 Write the equation of the line in cartesian form using any two points and 
verify the third point. 
Note : If the three points are collinear then their position vectors are coplanar, 
but the converse need not be true. 
Example 2.46 :  Show that the points (3, − 1, − 1), (1, 0, − 1) and (5, − 2, − 1) 
are collinear. 
Solution : 
 The equation of the line passing through (3, − 1, − 1) and (1, 0, − 1) is  

 
x − 3

2  = 
y + 1
− 1

 = 
z + 1

0  = λ (say) 

 Any point on the line is of the form (2λ + 3, − λ − 1, − 1) 
 The point (5, − 2, − 1) is obtained by putting λ = 1. 
 ∴ The third point lies on the same line. Hence the three points are 
collinear. 
Note : If the position vectors of the points are given then take the points and do 
the problem. 
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Example 2.47 :  Find the value of λ if the points (3, 2, − 4), (9, 8, − 10) and  
(λ, 4, − 6) are collinear. 
Solution : 
 Since the three points are collinear, the position vectors of the points are 
coplanar.  

 Let a
→

 = 3 i
→

 + 2 j
→

 − 4 k
→

 ; b
→

 = 9 i
→

 + 8 j
→

 − 10 k
→

  ; c
→

= λ i
→

 + 4 j
→

 − 6 k
→

 

  [ ]a
→

  b
→

  c
→

 = 







3   2    − 4

9   8   − 10

λ   4    − 6

  = 0 

  ⇒ 12λ = 60   ⇒   λ = 5 

EXERCISE 2.7 
  (1) Find the shortest distance between the parallel lines  

  (i) r
→

 = ( )2 i
→

 − j
→

 − k
→

  + t( )i
→

 − 2 j
→

 + 3 k
→

   and 

   r
→

 = ( )i
→

 − 2 j
→

 + k
→

  + s( )i
→

 − 2 j
→

 + 3 k
→

    

  (ii) 
x − 1
− 1

  =  
y
3  =  

z + 3
2   and  

x − 3
− 1

  =  
y + 1

3   =  
z − 1

2  

 (2) Show that the following two lines are skew lines : 

  r
→

 = ( )3 i
→

 + 5 j
→

 + 7 k
→

+ t ( )i
→

 − 2 j
→

 + k
→

 and  

  r
→

 = ( )i
→

 + j
→

 + k
→

 + s( )7 i
→

 + 6 j
→

 + 7 k
→

 

 (3) Show that the lines 
x − 1

1  = 
y + 1
− 1

 = 
z
3 and 

x − 2
1  = 

y − 1
2  = 

− z − 1
1  intersect 

and find their point of intersection. 

 (4) Find the shortest distance between the skew lines 
x − 6

3  = 
y − 7
− 1  = 

z − 4
1  

and 
x 
−3

 = 
y + 9

2  = 
z − 2

4   

 (5) Show that (2, − 1, 3), (1, − 1, 0) and (3, − 1, 6) are collinear. 

 (6) If the points (λ, 0, 3), (1, 3, − 1) and (− 5, − 3, 7) are collinear then  
find λ. 
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2.7 Planes : 
 A plane is defined as a surface such that the line joining of any two points 
on it lies completely on the surface. 
Vector and Cartesian Equations of the planes in parametric and non-
parametric form : 
 A plane is determined uniquely in the following cases : 
 (i) Given a point on the plane and a normal to the plane. 
 (ii) Given a normal to the plane and distance of the plane from the origin. 
 (iii) Given a point and two parallel vectors to the plane. 
 (iv) Given two points on it and a line parallel to the plane. 
 (v) Given three non-collinear points. 
 (vi) Equation of a plane that contains two given lines. 
 (vii) Equation of a plane passing through the line of intersection of two 

given planes and a given point. 
 Note : Eventhough the syllabus does not require the derivations 

(2.7.1 to 2.7.5) and it needs only the results, the equations are 
derived for better understanding the results. 

2.7.1 Equation of a plane passing through a given point and 
perpendicular to a vector. 
Vector Form :  Let the plane pass through the point A whose position vector be 

a
→

 w.r.to O and perpendicular to the given vector n
→

. 
Let P be any point on the plane and its 

position vector be r
→

. Join AP
→

 

 Here AP
→

 is perpendicular to n
→

 

  ∴ AP
→

. n
→

= 0 ⇒  OP
→

 − OA
→

. n
→

 = 0 

  ( )r
→

 − a
→

 . n
→

 = 0 ⇒ r
→

. n
→

 =  a
→

. n
→

 

 
 
 
 
 
 

Fig. 2.27 

 This is the vector equation of the required plane (non parametric form.) 
Cartesian Form : 

    If (x1, y1, z1) are the coordinates of A and a, b, c are the direction ratios of n
→

 

then   a
→

 = x1 i
→

 + y1 j
→

 + z1 k
→

  ;  n
→

 = a i
→

 + b j
→

 + c k
→

  ; r
→

 = x i
→

 + y j
→

 + z k
→

 

a
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A
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n

<

n
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   Now,  ( )r
→

 − a
→

 . n
→

 = 0 

  ⇒   (x − x1) i
→

 + (y − y1) j
→

 + (z − z1) k
→

 . ( )a i
→

 + b j
→

 + c k
→

 = 0 

  ⇒   a(x − x1) + b(y − y1) + c(z − z1) = 0 

 This is the cartesian equation of the plane (in non-parametric form). 
Corollary : The vector equation of the plane passing through the origin and 

perpendicular to the vector n
→

 is  r
→

. n
→

 = 0 

2.7.2 Equation of the plane when distance from the origin and unit 
normal is given : 
 Let p be the length of the 
perpendicular ON from the origin O 

to the given plane. Let n
∧

 be the unit 
vector normal to the plane in the 
direction O to N. 

 Then ON
→

 = pn
∧

. 
 Let P be any point on the plane 

and let its position vector be r
→

 

(i.e.,)  OP
→

 = r
→

. Join NP. 

 
 
 
 
 
 
 
 

Fig. 2.28 

 NP
→

 lies on the plane and ON
→

 is perpendicular to the plane 

 ⇒   NP
→

 . ON
→

 = 0   ⇒   OP
→

 − ON
→

. ON
→

 = 0 

 ( )r
→

 − pn
∧

 . pn
∧

 = 0   ⇒   r
→

 . n
∧

 − pn
∧

 . n
∧

 = 0 

 i.e.,   r
→

 . n
∧

 = p             ( )‡ n
∧

 . n
∧

 = 1  

 This is the vector equation of the plane (in non-parametric form). 
Cartesian form : 

 If l, m, n are the direction cosines of n
→

 then  n
∧

 = l i
→

 + m j
→

 + n k
→

 

 r
→

 . n
∧

 = p  ⇒ ( )x i
→

 + y j
→

 + z k
→

 . ( )l i
→

 + m j
→

 + n k
→

 = p 

     lx + my + nz = p 
 This is the cartesian equation of the plane (in non-parametric form). 

r

O

x

z

y

p n

<

P

N

rr

O

x

z

y

p n

<

p n

<

P

N
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Corollary : If n
→

 is a normal vector but not a unit vector, 

   then    n
∧

 = 
n
→

| |n
→

  

   r
→

 . 
n
→

| |n
→

 = p ⇒  r
→

 . n
→

 = p| |n
→

 = q (say) 

   r
→

 . n
→

 = q 

 This is the vector equation of the plane perpendicular to the vector n
→

 . 

 The length of the perpendicular from origin to this plane is 
q

| |n
→

 

2.7.3 Equation of the plane passing through a given point and 
parallel to two given vectors : 

 Let a
→

 be the position vector of 
the given point A referred to the 

origin O. Let u
→

 and v
→

 be the 
given vectors, which are parallel to 
the plane. 
 Let P be any point on the plane 

and let its position vector be r
→

 

(i.e.,) OP
→

 = r
→

. 

 
 
 
 
 
 
 

Fig. 2.29 

 Through A, draw a lines AB and AC parallel to u
→

 and v
→

 lying in the 

planes such that AB
→

 = u
→

 and  AC
→

 = v
→

 . 

 Now AP
→

 is coplanar with AB
→

 and AC
→

 

   ∴ AP
→

 = s AB
→

 + t AC
→

 where s and t are scalars 

    = s u
→

 + t v
→

 

   OP
→

 = OA
→

 +  AP
→

 

   ⇒   r
→

 = a + s u
→

 + t v
→

 … (1) 
 This is the vector equation of the plane (in parametric form). 
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Cartesian form : 

   Let   a
→

 = x1 i
→

 + y1 j
→

 + z1 k
→

 

   u
→

 = l1 i
→

 + m1 j
→

 + n1 k
→

  ;  v
→

 = l2 i
→

 + m2 j
→

 + n2 k
→

 

 From (1) r
→

 = a
→

 + s u
→

 + t v
→

 

   x i
→

 + y j
→

 + z k
→

 =  x1 i
→

 + y1 j
→

 + z1 k
→

 + s l1 i
→

 + m1 j
→

 + n1 k
→

  

+ t  l2 i
→

 + m2 j
→

 + n2 k
→

 

 Equating the coefficients i
→

, j
→

, k
→

 

  x = x1 + sl1 + tl2 

  y = y1 + sm1 + tm2     

  z = z1 + sn1 + tn2 



These are the

parametric equations
 in cartesian form

 

  ⇒  x − x1 = sl1 + tl2 

  y − y1 = sm1 + tm2     

   z − z1 = sn1 + tn2 

  Eliminating s and t, we get 







x − x1   y − y1   z − z1

l1    m1    n1

l2    m2    n2

 = 0 

 This is the cartesian equation of the required plane (in non-parametric 
form). 

Non-parametric vector equation 

 AP
→

, AB
→

 and AC
→

 are coplanar i.e., the vectors r
→

 − a
→

, u
→

, v
→

 are coplanar 

 ∴ [ ]r
→

 − a
→
,  u
→
,  v
→

 = 0     or  [ ]r
→

  u
→

  v
→

 =  [ ]a
→
,  u
→
,  v
→

 

 This is the vector equation of plane in non-parametric form. 



 105

2.7.4 Equation of the plane passing through two given points and 
parallel to a given vector : 
Vector Form : 

 Let a
→

 and b
→

 be the position 
vectors of the points A and B 
(respectively) referred to the origin 

O. Let v
→

 be the given vector. 
 The required plane passes 
through the points A and B and is 
parallel to the vector v. 
 Let P be any point on the plane 

and let its position vector be r
→

  

(i.e.,) OP
→

 = r
→

. 

 
 
 
 
 
 
 
 
 

Fig. 2.30 

 Through A, draw a line AC lying in the plane such that AC
→

 = v
→

. 

 Now AP
→

 is coplanar with AB
→

 and AC
→

 

 ∴ AP
→

 = s AB
→

 + t AC
→

 where s and t are scalars 

  = s  OB
→

 − OA
→

 +  t v
→

  = s ( )b
→

 − a
→

 +  t v
→

 

 OP
→

 = OA
→

 + AP
→

  

 ⇒     r
→

 = a
→

 + s ( )b
→

 − a
→

 + t v
→

 … (1) 

 r
→

 = (1 − s) a
→

 + s b
→

 +  t v
→

 

 This is the vector equation of the plane (in parametric form). 

Non-parametric vector equation 

 AP
→

, AB
→

 and AC
→

  are coplanar i.e., the vectors r
→

 − a
→

, b
→

 −  a
→

 and v
→

 are 
coplanar 

 ∴ [ ]r
→

  − a
→
,  b
→

  − a
→
, v
→

 = 0 

 This is the required vector equation of plane in non-parametric form. 
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Cartesian form : 

 Let   a
→

 = x1 i
→

 + y1 j
→

 + z1 k
→

  ;   b
→

 = x2 i
→

 + y2 j
→

 + z2 k
→

 

 v
→

 = l i
→

 + m j
→

 + n k
→

     ;   r
→

 = x i
→

 + y j
→

 + z k
→

 
 From (1) 

   x i
→

 + y j
→

 + z k
→

 =  x1 i
→

 + y1 j
→

 + z1 k
→

  

+ s  (x2 − x1) i
→

 + (y2 − y1) j
→

 + (z2 − z1) k
→

  + t ( )l i
→

 + m j
→

 + n k
→

 

 Equating the coefficients of i
→

, j
→

, k
→

 
  x = x1 + s(x2 − x1) + tl 

  y = y1 + s(y2 − y1) + tm 

  z = z1 + s(z2 − z1) + tn 


These are the

parametric equations
 in cartesian form

 

  ⇒  (x − x1) = s(x2 − x1) + tl 

  (y − y1) = s(y2 − y1) + tm 

   (z − z1) = s(z2 − z1) + tn 

  Eliminating s and t we get 







x − x1    y − y1    z − z1

x2 − x1   y2 − y1   z2 − z1

l    m    n

 = 0 

 This is the (non-parametric) equation of the plane in cartesian form. 
2.7.5 Vector and cartesian equations of the plane passing through three 
given non-collinear points. 

 Let a
→

 , b
→

 and c
→

 be the position 
vectors of the points A, B and C 
referred to the origin O. 
 The required plane passes 
through the points A, B and C. 
 Let P be any point on the plane 

and let its position vector be r
→

  

(i.e.,) OP
→

 = r
→

. 
 Now join AB, AC and AP. 

 AP
→

 is coplanar with AB
→

 and AC
→

 

 
 
 
 
 
 
 
 

Fig. 2.31 
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   ∴ AP
→

 = s AB
→

 + t AC
→

 where s and t are scalars 

    = s  OB
→

 − OA
→

 +  t OC
→

 − OA
→

 

    = s ( )b
→

 − a
→

 +  t ( )c
→

 − a
→

 

   OP
→

 = OA
→

 + AP
→

  

   ⇒    r
→

 = a
→

 + s ( )b
→

 − a
→

 + t ( )c
→

 − a
→

  (or) … (1) 

   r
→

 = (1 − s − t) a
→

 + s b
→

 +  t c
→

 
 This is the vector equation of the plane (in parametric form). 
Non-parametric vector equation :  

 AP
→

, AB
→

 and AC
→

 are coplanar. 

 (i.e.,)  AP
→

,  AB
→

,  AC
→

  = 0 

   ∴ [ ]r
→

  − a
→
,  b
→

  − a
→
, c
→

 − a
→

 = 0 

 This is the required vector equation of plane in non-parametric form. 
Cartesian form : 

Let a
→

= x1 i
→

 + y1 j
→

 + z1 k
→

 ; b
→

 = x2 i
→

 + y2 j
→

 + z3 k
→

 ; c
→

 = x3 i
→

 + y3 j
→

 + z3 k
→

   

     r
→

 = x i
→

 + y j
→

 + z k
→

   
From (1) 

   x i
→

 + y j
→

 + z k
→

 =  x1 i
→

 + y1 j
→

 + z1 k
→

  

+ s  (x2 − x1) i
→

 + (y2 − y1) j
→

 + (z2 − z1) k
→

   

+ t  (x3 − x1) i
→

 + (y3 − y1) j
→

 + (z3 − z1) k
→

 

 Equating the coefficients of i
→

, j
→

 and k
→

, we get 

 x = x1 + s(x2 − x1) + t(x3 − x1)  

 y = y1 + s(y2 − y1) + t(y3 − y1)  

 z = z1 + s(z2 − z1) + t(z3 − z1)  


These are the

parametric equations
 in cartesian form
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  Eliminating s and t we get 







x − x1    y − y1    z − z1

x2 − x1   y2 − y1   z2 − z1

x3 − x1   y3 − y1   z3 − z1

 = 0 

 This is the (non-parametric) equation of the plane in cartesian form. 
Example 2.48 : Find the vector and cartesian equation of a plane which is  
at a distance of 8 units from the origin and which is normal to the vector  

3 i
→

 + 2 j
→

 − 2 k
→

  

Solution :  Here p = 8  and  n
→

 = 3 i
→

 + 2 j
→

 − 2 k
→

  

   ∴ n
∧
 = 

n
→

| |n
→

 = 
3 i
→

 + 2 j
→

 − 2 k
→

9 + 4 + 4
 = 

3 i
→

 + 2 j
→

 − 2 k
→

17
 

 Hence the required vector equation of the plane is  

   r
→

 . n
∧

 = p 

   r
→

 . 
3 i
→

 + 2 j
→

 − 2 k
→

17
 = 8 

  r
→

 . ( )3 i
→

 + 2 j
→

 − 2 k
→

  = 8 17 

 Cartesian form is (xi +yj + zk). (3i + 2j − 2k) = 8 17     

 3x + 2y − 2z = 8 17 
Example 2.49 :  
 The foot of perpendicular drawn from the origin to the plane is (4, − 2, − 
5), find the equation of the plane.  

Solution :  The required plane passes through the point A(4, − 2, − 5) and is 

perpendicular to OA
→

. 

 ∴ a
→

 = 4 i
→

 − 2 j
→

 − 5 k
→

 and n
→

 = OA
→

 = 4 i
→

 − 2 j
→

 − 5 k
→

 

 ∴ The required equation of the plane is r
→

. n
→

 = a
→

. n
→

 

 r
→

 . ( )4 i
→

 − 2 j
→

 − 5 k
→

 = ( )4 i
→

 − 2 j
→

 − 5 k
→

 . ( )4 i
→

 − 2 j
→

 − 5 k
→

 

  = 16 + 4 + 25 

 r
→

 . ( )4 i
→

 − 2 j
→

 − 5 k
→

 = 45 … (1) 
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Cartesian form : 

 ( )x i
→

 + y j
→

 + z k
→

  . ( )4 i
→

 − 2 j
→

 − 5 k
→

 = 45 

 4x − 2y − 5z = 45 

Example 2.50 : Find the vector and cartesian equations of the plane through the 
point (2, − 1, − 3) and parallel to the lines 

 
x − 2

3   =  
y − 1

2   =  
z − 3
− 4

 and  
x − 1

2   =  
y + 1
− 3

  =  
z− 2

2  . 

Solution :  The required plane passes through A(2, − 1, − 3) and parallel to  

u
→

 = 3 i
→

 + 2 j
→

 − 4 k
→

 and v
→

 = 2 i
→

 − 3 j
→

 + 2 k
→

 

 The required equation is  r
→

 = a
→

 + s u
→

 + t v
→

   

 r
→

 = ( )2 i
→

 − j
→

 − 3 k
→

  +s( )3 i
→

 + 2 j
→

 − 4 k
→

  + t( )2 i
→

 − 3 j
→

 + 2 k
→

  

Cartesian form : 
 (x1, y1, z1) is (2, − 1, −3) ; (l1, m1, n1) is (3, 2, −4) ; (l2, m2, n2) is (2, −3, 2) 

  The equation of the plane is  







x − x1   y − y1   z − z1

l1    m1    n1

l2    m2    n2

 = 0 

  i.e.,   







x − 2   y + 1   z + 3

3    2    − 4

2    − 3    2

 = 0 

 ⇒  8x + 14y + 13z + 37 = 0 

 This is the required equation in cartesian form. 

Example 2.51 : Find the vector and cartesian equations of the plane passing 
through the points (− 1, 1, 1) and (1, − 1, 1) and perpendicular to the plane  
x + 2y + 2z = 5 

Solution :  The normal vector to the plane x + 2y + 2z = 5 is i
→

 + 2 j
→

 + 2 k
→

. 
This vector is parallel to the required plane. 

 ∴ The required plane passes through the points (− 1, 1, 1) and (1, − 1, 1) 

and parallel to the vector i
→

 + 2 j
→

 + 2 k
→

. 
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Vector equation of the plane : 
 The vector equation of the plane passing through two given points and 
parallel to a vector is 

 r
→

 = (1 − s) a
→

 + s b
→

 + t v
→

 where s and t are scalars. 

 Here  a
→

 = − i
→

 + j
→

 + k
→

  ;  b
→

 = i
→

 − j
→

 + k
→

  ;  v
→

 = i
→

 + 2 j
→

 + 2 k
→

 

 ∴ r
→

 = (1 − s) ( )− i
→

 + j
→

 + k
→

 + s ( )i
→

 − j
→

 + k
→

 + t( )i
→

 + 2 j
→

 + 2 k
→

 

 This is the required vector equation of the plane. 
Cartesian form : 
 (x1, y1, z1) is (− 1, 1, 1) ; (x2, y2, z2) is (1, − 1, 1) ; (l1, m1, n1) is (1, 2, 2) 

  The equation of the plane is  







x − x1    y − y1    z − z1

x2 − x1   y2 − y1   z2 − z1

l1    m1    n1

 = 0 

  i.e.,   







x + 1   y − 1   z − 1

2    − 2    0

1    2    2

 = 0 

 ⇒  2x + 2y − 3z + 3 = 0 
Example 2.52 : Find the vector and cartesian equations of the plane passing 
through the points (2, 2, − 1), (3, 4, 2) and (7, 0, 6) 
Solution :  Vector equation of the plane passing through three given non-
collinear points is 

  r
→

 = (1 − s − t) a
→

 + s b
→

 + t c
→

 where s and t are scalars. 

 Here a
→

 = 2 i
→

 + 2 j
→

 − k
→

 ;  b
→

= 3 i
→

 + 4 j
→

 + 2 k
→

 ; c
→

 = 7 i
→

 + 6 k
→

 

∴ r
→

 = (1−s −t)  ( )2 i
→

 + 2 j
→

 − k
→

+ s ( )3 i
→

 + 4 j
→

 + 2 k
→

 + t( )7 i
→

 + 6 k
→

 

Cartesian equation of the plane : 
Here (x1, y1, z1) is (2, 2, − 1)  ;  (x2, y2, z2) is (3, 4, 2)  ;  (x3, y3, z3) is (7, 0, 6) 

  The equation of the plane is  







x − x1    y − y1    z − z1

x2 − x1   y2 − y1   z2 − z1

x3 − x1   y3 − y1   z3 − z1

 = 0 
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  i.e.,   







x − 2   y − 2   z + 1

1    2    3

5    − 2    7

 = 0 

  5x + 2y − 3z = 17 
 This is the Cartesian equation of the plane. 

EXERCISE 2.8 
  (1) Find the vector and cartesian equations of a plane which is at a  

distance of 18 units from the origin and which is normal to the vector 2 i
→

 

+ 7 j
→

 + 8 k
→

 
 (2) Find the unit normal vectors to the plane 2x − y + 2z = 5. 
 (3) Find the length of the perpendicular from the origin to the plane  

r
→

 . ( )3 i
→

 + 4 j
→

 + 12 k
→

 = 26. 
 (4) The foot of the perpendicular drawn from the origin to a plane is  

(8, − 4, 3). Find the equation of the plane. 
 (5) Find the equation of the plane through the point whose p.v.  is  

  2 i
→

 − j
→

 + k
→

 and perpendicular to the vector 4 i
→

 + 2 j
→

 − 3 k
→

. 
 (6) Find the vector and cartesian equations of the plane through the point  

(2, − 1, 4) and parallel to the plane r
→

 .( )4 i
→

 − 12 j
→

 − 3 k
→

  = 7. 
 (7) Find the vector and cartesian equation of the plane containing the line 

  
x − 2

2   =  
y − 2

3   =  
z − 1

3  and parallel to the line   
x + 1

3   =  
y − 1

2   =  
z+ 1

1  . 

 (8) Find the vector and cartesian equation of the plane through the point  
(1, 3, 2) and parallel to the lines  

  
x + 1

2   =  
y + 2
− 1

  =  
z + 3

3   and  
x − 2

1   =  
y + 1

2   =  
z + 2

2  

 (9) Find the vector and cartesian equation to the plane through the point  
(−1, 3, 2) and perpendicular to the planes x+2y+2z = 5 and 3x+y+2z = 8. 

 (10) Find the vector and cartesian equation of the plane passing through the 
points A(1, − 2, 3) and B (− 1, 2, − 1) and is parallel to the line 

  
x − 2

2   =  
y + 1

3   =  
z − 1

4  

 (11) Find the vector and cartesian equation of the plane through the points  
(1, 2, 3) and (2, 3, 1) perpendicular to the plane 3x− 2y + 4z − 5 = 0 
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 (12) Find the vector and cartesian equation of the plane containing the line  
x − 2

2   =  
y − 2

3   =  
z − 1
− 2

 and passing through the point (− 1, 1, − 1). 

 (13) Find the vector and cartesian equation of the plane passing through the 

points with position vectors 3 i
→

 + 4 j
→

 + 2 k
→

, 2 i
→

 − 2 j
→

 − k
→

 and  

7 i
→

 + k
→

. 
 (14) Derive the equation of the plane in the intercept form. 
 (15) Find the cartesian form of the following planes : 

  (i)  r
→

 = (s − 2t) i
→

 + (3 − t) j
→

 + (2s + t) k
→

 

  (ii) r
→

 = (1 + s + t) i
→

 + (2 − s + t) j
→

 + (3 − 2s +2 t) k
→

 

2.7.6  Equation of a plane passing through the line of intersection of 
two given planes : 
Vector form : 
 The vector equation of the plane passing through the line of intersection of 

the planes r
→

 . n
→

1 = q1  and r
→

 . n
→

2 = q2  is 

   r
→

 . n
→

1 − q1  + λ  r
→

 . n
→

2 − q2  = 0 

  i.e. r
→

 .  n
→

1 + λ n
→

2  = q1 + λq2 

Cartesian form : 
 The cartesian equation of the plane passing through the line of intersection 
of the planes a1x + b1y + c1z+ d1 = 0 and a2x + b2y + c2z+ d2 = 0 is 

(a1x + b1y + c1z + d1) + λ(a2x + b2y + c2z+ d2 ) = 0 

Example 2.53 :  Find the equation of the plane passing through the line of 
intersection of the plane 2x − 3y + 4z = 1 and x − y = − 4 and passing through 
the point (1, 1, 1). 
Solution : 
 Any plane through the line of intersection of the given two planes is of the 
form (2x − 3y + 4z − 1) + λ(x − y + 4) = 0 

 But it passes through the point (1, 1, 1).  ∴ λ = − 
1
2 

      ∴ The equation of the required plane is (2x − 3y + 4z − 1)− 
1
2 (x − y + 4)= 0  

 i.e., 3x − 5y + 8z − 6 = 0 
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Example 2.54 :  Find the equation of the plane passing through the intersection 
of the planes 2x − 8y + 4z = 3 and 3x − 5y + 4z + 10 = 0 and perpendicular to 
the plane 3x − y − 2z − 4 = 0  

Solution : 

 The equation of the plane passing through the line of intersection of the 
given two planes is of the form (2x − 8y + 4z − 3) + λ (3x − 5y + 4z + 10) = 0 
i.e., (2 + 3λ) x + (− 8 − 5λ)y + (4 + 4λ)z + (− 3 + 10λ) = 0 . But the required 
plane is perpendicular to the plane 3x − y − 2z − 4 = 0 

 ∴ Their normals are perpendicular.  

 i.e., (2 + 3λ) 3 + (− 8 − 5λ) (− 1) + (4 + 4λ) (− 2) = 0 

 6λ + 6 = 0     ⇒  λ = − 1 

 ∴ The required equation is (2x − 8y + 4z − 3) −1(3x − 5y + 4z + 10) = 0 

  − x − 3y − 13 = 0 

  x + 3y + 13 = 0 

2.7.7 The distance between a point and  a plane : 

 Let (x1, y1, z1) be a point and ax + by + cz + d = 0 be the equation of the 

plane. The distance between the point and the plane is 






ax1 + by1 + cz1 + d

a2 + b2 + c2
 

Corollary (1) : 

 The distance between the origin and the plane ax + by + cz + d = 0 is 

 






d

a2 + b2 + c2
 

Corollary (2) : 

 The distance between the two parallel planes ax + by + cz + d1 = 0 and  

ax + by + cz + d2 = 0 is 






d1 − d2

a2 + b2 + c2
 

Note : If the given equation is in vector form, convert into cartesian form and 
find the distance. 

Example 2.55 :  Find the distance from the point (1, − 1, 2) to the plane  

r
→

 = ( )i
→

 + j
→

 + k
→

   + s( )i
→

 − j
→

  + t( )j
→

 − k
→
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Solution : 
 The given plane is passing through the point (1, 1, 1) and parallel to two 

vectors ( )i
→

 − j
→

  and ( )j
→

 − k
→

 . 

 ∴ The corresponding cartesian equation is of the form 

  







x − x1   y − y1   z − z1

l1    m1    n1

l2    m2    n2

  = 0      





(x1, y1, z1) = (1, 1, 1)

(l1, m1, n1) = (1 − 1, 0)

(l2, m2, n2) = (0, 1, − 1)
 

 i.e., 







x − 1   y − 1   z − 1

1    − 1    0

0    1    − 1

 = 0  i.e., x + y + z − 3 = 0 

  Here  (x1, y1, z1) = (1, −1, 2) 

∴ The distance = 






ax1 + by1 + cz1 + d

a2 + b2 + c2
 = 




1 − 1 + 2 − 3

1 + 1 + 1
  = 

1
3

 

Example 2.56 :  Find the distance between the parallel planes  

r
→

.( )− i
→

 − j
→

 + k
→

 = 3 and  r
→

 . ( )i
→

 + j
→

 − k
→

 = 5 

Solution : 
 The corresponding cartesian equations of the planes are 

 − x − y + z − 3 = 0  and x + y − z − 5 = 0 

 i.e.,  x + y − z + 3 = 0   and x + y − z − 5 = 0 

 distance = 






d1 − d2

a2 + b2 + c2
 = 




3 + 5

1 + 1 + 1
 = 

8
3

 

2.7.8 Equation of the plane which contain two given lines (i.e. passing 
through two given lines) 

 Let r
→

 = a
→

1 + t u
→

  and r
→

 = a
→

2 + s v
→

  be the lines, lie on the plane. 

 Clearly r
→
− a
→

1, u
→

, v
→

 are coplanar  and r
→

 − a
→

2, u
→

, v
→

are also  coplanar 

 Thus  r
→

 − a
→

1, u
→
, v
→

  = 0 and  r
→

 − a
→

2, u
→
, v
→

  = 0  

 Note that the above two equations represent the same required plane. The 
cartesian form is  
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x − x1   y − y1   z − z1

l1    m1    n1

l2    m2    n2

  = 0  or 







x − x2   y − y2   z − z2

l1    m1    n1

l2    m2    n2

 = 0 

 Where a
→

1 = x1 i
→

 + y1 j
→

 + z1 k
→

  ;  a
→

2 = x2 i
→

 + y2 j
→

 + z2 k
→

   

             u
→

 = l1 i
→

 + m1 j
→

 + n1 k
→

  ;  v
→

 = l2 i
→

 + m2 j
→

 + n2 k
→

   

Note : 
 (1) If the two lines are parallel then take the two trivial points from the 

lines and the parallel vector. Now find the equation of the plane 
passing through two points and parallel to a vector. 

 (2) Through two skew lines, we can’t draw a plane. 
Example 2.57 :  Find the equation of the plane which contains the two lines  
x − 1

2  = 
y − 2

3  = 
z − 3

4   and 
x − 4

5  = 
y − 1

2  = 
z
1 

Solution : 
 Take the trivial point from the first line and the two parallel vectors i.e. (x1, 
y1, z1) = (1, 2, 3). 

 (l1, m1, n1) = (2, 3, 4) and (l2, m2, n2) = (5, 2, 1) 

 The required equation is 

 







x − x1   y − y1   z − z1

l1    m1    n1

l2    m2    n2

  = 0  ⇒ 









x − 1   y − 2   z − 3

2    3    4

5    2    1

 = 0 

 ⇒  5x − 18y + 11z − 2 = 0 
Example 2.58 :  Find the point of intersection of the line passing through the 
two points (1, 1, − 1) ; (− 1, 0, 1) and the xy-plane. 
Solution : 
 The equation of the line passing through (1, 1, − 1) and (− 1, 0, 1) is 

 
x− 1

2   =  
y − 1

1   =  
z + 1
− 2  

 It meets the xy-plane i.e.  z = 0 

 ∴ 
x − 1

2   =  
y − 1

1   =  
1
− 2

   ⇒   x = 0,   y = 
1
2 

 The required point is 



0,  

1
2,  0  
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Example 2.59 :  Find the co-ordinates of the point where the line  

r
→

 = ( )i
→

 + 2 j
→

 − 5 k
→

  + t( )2 i
→

 − 3 j
→

 + 4 k
→

  meets the plane 

r
→

 .( )2 i
→

 + 4 j
→

 − k
→

  = 3 

Solution : 
 The equation of the straight line in the cartesian form is 

 
x − 1

2   =  
y − 2
− 3

 = 
z + 5

4   =  λ  (say) 

 ∴ Any point on this line is of the form (2λ + 1, − 3λ + 2,   4λ − 5). 

 The cartesian equation of the plane is 2x + 4y − z − 3 = 0 
 But the required point lies on this plane. 

 ∴ 2(2λ + 1) + 4(− 3λ + 2) − (4λ − 5) − 3 = 0   ⇒ λ = 1    

∴ The required point is (3, − 1, − 1) 

EXERCISE 2.9 
  (1) Find the equation of the plane which contains the two lines  

x + 1
2  = 

y − 2
− 3

 = 
z − 3

4  and 
x − 4

3  = 
y − 1

2  = z − 8 

 (2) Can you draw a plane through the given two lines? Justify your answer. 

  r
→

 = ( )i
→

 + 2 j
→

 − 4 k
→

 + t( )2 i
→

 + 3 j
→

 + 6 k
→

  and 

  r
→

 = ( )3 i
→

 + 3 j
→

 − 5 k
→

 + s( )−2 i
→

 + 3 j
→

 + 8 k
→

 

  (3) Find the point of intersection of the line  

  r
→

 = ( )j
→

 − k
→

  + s( )2 i
→

 − j
→

 + k
→

  and xz – plane 

 (4) Find the meeting point of the line  

  r
→

 = ( )2 i
→

 + j
→

 − 3 k
→

  + t( )2 i
→

 − j
→

 − k
→

  and the plane  

  x − 2y + 3z + 7 = 0 

 (5) Find the distance from the origin to the plane  

  r
→

 . ( )2 i
→

 − j
→

 + 5 k
→

  = 7 

 (6) Find the distance between the parallel planes 

  x − y + 3z + 5 = 0  ;   2x − 2y + 6z + 7 = 0 
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2.7.9  Angle between two given planes : 
 The angle between two planes is 
defined as the angle between their 
normals. 

 Let the   r
→

 . n
→

1 = q1 and r
→

 . n
→

2 = q2  

the equations of the given two planes 

(where n
→

1 and  n
→

2 are normals to the 

planes.) 

 Now if θ be the angle between the two 
planes (i.e., between their normals) then 

 

 

 

 

 

 

 

Fig. 2.32 

  θ = cos−1









n

→
1 . n

→
2

 n
→

1  n
→

2

 

Note : (i) If the two planes are perpendicular then n
→

1 . n
→

2 = 0 

  (ii) If the two planes are parallel then n
→

1 =  t n
→

2 where t is a scalar. 

2.7.10 Angle between a line and a plane 
 The angle between a line and a plane is 
the complement angle between the line 
and the normal to the plane. 

 Let r
→

 = a
→

 + t b
→

 be the line and  

r
→

 . n
→

 = q be the plane. 

 If θ is the angle between the line and the 
plane then (90 − θ) is the angle between 
the line and the normal to the plane. 

 

 

 

 

 

 

Fig. 2.33 

 i.e.,  (90 − θ) is the angle between b
→

 and n
→

 

∴ cos (90° − θ) = 
b
→

 . n
→

| |b
→ | |n

→
 ⇒  sin θ = 

b
→

 . n
→

| |b
→ | |n

→
 ⇒ θ = sin−1 









b

→
 . n
→

| |b
→ | |n

→
 

θ
n2

n1

θ
n2n2

n1n1

θ

90-θ

n
b

θ

90-θ

nn
bb
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Note : If the line is parallel to the plane i.e., the normal to the plane is 

perpendicular to the line then  b
→

 . n
→

 = 0 

Example 2.60 : Find the angle between 2x − y + z = 4 and x + y + 2z = 4 
Solution :  The normals to the given planes are  

 n
→

1 = 2 i
→

 − j
→

 + k
→

 and n
→

2 = i
→

 + j
→

 + 2 k
→

 

 Let θ be the angle between the planes then  

   cos θ = 
n
→

1 . n
→

2

 n
→

1  n
→

2

 = 
3

6 6
 = 

1
2   ⇒ θ = 

π
3 

Example 2.61 : Find the angle between the line  

 r
→

 = ( )i
→

 + 2 j
→

 − k
→

  + µ ( )2 i
→

 + j
→

 + 2 k
→

  and the plane 

 r
→

. ( )3 i
→

 − 2 j
→

 + 6 k
→

  = 0 
Solution :  Let θ be the angle between the line and the plane. 

   sinθ =  
b
→

 . n
→

| |b
→ | |n

→
 

   b
→

 = 2 i
→

 + j
→

 + 2 k
→

  ;  n
→

 = 3 i
→

 − 2 j
→

 + 6 k
→

 

   sin θ = 
16

3  × 7  ⇒   θ = sin−1 



16

21  

EXERCISE 2.10 
 (1) Find the angle between the following planes : 
  (i)  2x + y − z = 9 and x + 2y + z = 7 
  (ii) 2x − 3y + 4z = 1 and − x + y = 4 

  (iii) r
→

 . ( )3 i
→

 + j
→

 − k
→

 = 7 and r
→

 . ( )i
→

 + 4 j
→

 − 2 k
→

 = 10 
 (2) Show that the following planes are at right angles. 

  r
→

 . ( )2 i
→

 − j
→

 + k
→

 = 15 and r
→

 . ( )i
→

 − j
→

 − 3 k
→

 = 3 

 (3) The planes r
→

 . ( )2 i
→

 + λ j
→

 − 3 k
→

 = 10 and r
→

 . ( )λ i
→

 + 3 j
→

 + k
→

 = 5 
are perpendicular. Find λ. 
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 (4) Find the angle between the line 
x − 2

3  = 
y + 1
− 1

 = 
z − 3
− 2

 and the plane  

3x + 4y + z + 5 = 0 

 (5) Find the angle between the line r
→

 = i
→

 + j
→

 + 3 k
→

 + λ( )2 i
→

 + j
→

 − k
→

 

and the plane r
→

.( )i
→

 + j
→

 = 1. 

2.8 Sphere : 
 A sphere is the locus of a point which moves in space in such a way that its 
distance from a fixed point remains constant. 
 The fixed point is called the centre and the constant distance is called the 
radius of the sphere. 
 Note : Eventhough the syllabus does not require the derivations 

(2.8.1, 2.8.2) and it needs only the results, the equations are 
derived for better understanding the results. 

2.8.1 Vector equation of the sphere whose position vector of centre is 

c
→

 and radius is a. 
 Let O be the point of reference 
(origin) and C be the centre of the 

sphere having position vector c
→

 

 (i.e.,) OC
→

 = c
→

 
 Let P be any point on the sphere 

whose position vector be r
→

 

 (i.e.,) OP
→

 = r
→

 

 
 
 
 
 
 
 

Fig. 2.34 

 The radius of the sphere is given as a.  (i.e.,) CP
→

 = a
→

 

 From the figure  (2.34) OP
→

 = OC
→

 + CP
→

 

   r
→

 = c
→

 + a
→

 

   r
→

 − c
→

 =  a
→

 

                            ⇒  | |r
→

 − c
→

 = | |a
→

 … (1) 
 This is the vector equation of the sphere. 
Corollary : Vector equation of a sphere whose centre is origin and radius is a. 

a

r

C

c

O

P

aa

rr

C

cc

O

P
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 When O coincides with the centre C then c
→

 = o
→

 and the vector equation 

of the sphere (1) becomes | |r
→

 = | |a
→

 
Cartesian form : 

   Let   r
→

 = x i
→

 + y j
→

 + z k
→

 

   c
→

 = c1 i
→

 + c2 j
→

 + c3 k
→

 

   ⇒  r
→

 − c
→

 = (x − c1) i
→

 + (y − c2) j
→

 + (z − c3) k
→

 

              But  | |r
→

 − c
→

2

 = a2 … (2) 

From (2)        (x − c1)2 + (y − c2)2 +  (z − c3)2 = a2 … (3) 

 This is the cartesian equation of the sphere whose centre is (c1, c2, c3) and 

raidus is a. 
Corollary : If the centre is at the origin, then the equation (3) takes the form  

x2 + y2 + z2 = a2. 
 This  is known as the standard form of the equation of the sphere. 
Note : General Equation of a Sphere : 

 The equation x2 + y2 + z2 + 2ux + 2vy + 2wz + d = 0 represents a sphere 

with centre (− u, − v, − w) and the radius = u2 + v2 + w2 − d 
Note : 

 (i) the coefficients of x2, y2, z2 are equal. 
 (ii) The equation does not contain the terms of xy, yz and zx. 

2.8.2 Vector and Cartesian equations of the sphere when the 
extremities of the diameter being given : 

 Let C be the centre of the sphere. 
Let A and B be the end points of the 
diameter AB. 

 Let a
→

 be the position vector of 

the point A and b
→

 be the position 
vector of the point B with reference 
to the origin O. 
 

 
 
 
 
 
 
 

Fig. 2.35 

a
b

BA

P

O

r

C

aa
bb

BA

P

O

rr

C



 121

 (i.e.,) OA
→

 = a
→

 and OB
→

 = b
→

 

 Let P be any point on the surface of the sphere. Let r
→

 be the position 

vector of P. (i.e.,) OP
→

 = r
→

 

   AP
→

 = OP
→

 − OA
→

  =  r
→

 − a
→

 

   BP
→

 = OP
→

 − OB
→

  =  r
→

 − b
→

 

 We know that the diameter AB subtends a right angle at P. 

 ⇒  AP
→

 ⊥ BP
→

 

 ⇒  AP
→

 . BP
→

 = 0 

 ⇒   ( )r
→

 − a
→

 . ( )r
→

 − b
→

 = 0                           … (1) 

 which is the required equation of the sphere. 

Cartesian Form : 
 Let A(x1, y1, z1) and B(x2, y2, z2) be the end points of the diameter AB. 

 Let P (x, y, z) be any point on the surface of the sphere. 

 Now     a
→

 = OA
→

 = x1 i
→

 + y1 j
→

+ z1 k
→

 ;  b
→

 = OB
→

 = x2 i
→

 + y2 j
→

+ z2 k
→

 

  r
→

 = OP
→

 = x i
→

 + y j
→

+ z k
→

 

 From (1) ( )r
→

 − a
→

 . ( )r
→

 − b
→

 = 0 

  



( )x i

→
+y j
→

+ z k
→

−(x1 i
→

+y1 j
→

+z1 k
→

)  . 



( )x i

→
+y j
→

+z k
→

−(x2 i
→

+y2 j
→

+ z2 k
→

)  =  0 

 (x − x1) i
→

 + (y − y1) j
→

 + (z − z1) k
→

 .  (x − x2) i
→

 + (y − y2) j
→

 + (z − z2) k
→

=0 

 ⇒  (x − x1) (x − x2) + (y − y1) (y − y2) + (z − z1) (z − z2) = 0 

 This is required cartesian form of the equation of the sphere in terms of the 
end points of the diameter. 

Example 2.62 : Find the vector and cartesian equations of the sphere whose 

centre is 2 i
→

 − j
→

 + 2 k
→

 and radius is 3. 
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Solution :  We know that the vector equation of the sphere with centre and 
radius is 

   | |r
→

 − c
→

 = a 

 Here c
→

 = 2 i
→

 − j
→

 + 2 k
→

  and a = 3 

 ∴ The required vector equation is  r
→

 − ( )2 i
→

 − j
→

 + 2 k
→

 = 3 

Cartesian equation : 

 Putting r
→

 = x i
→

 + y j
→

 + z k
→

 we get 

  ( )x i
→

 + y j
→

 + z k
→

 − ( )2 i
→

 − j
→

 + 2 k
→

 = 3 

 | |(x − 2) i
→

 + (y + 1) j
→

 + (z − 2) k
→

 = 3 

 ⇒   | |(x − 2) i
→

 + (y + 1) j
→

 + (z − 2) k
→

2

 = 32 

 (x − 2)2 + (y + 1)2 + (z − 2)2 = 9 

 ⇒  x2 + y2 + z2 − 4x + 2y − 4z = 0 
Example 2.63 : Find the vector and cartesian equation of the sphere whose 
centre is (1, 2, 3) and which passes through the point (5, 5, 3). 

Solution :   Radius = (5 − 1)2 + (5 − 2)2 + (3 − 3)2 
   = 16 + 9  =  25 = 5 

  Here   a = 5  and c
→

 = i
→

 + 2 j
→

 + 3 k
→

 
 ∴ Vector equation of the sphere is  

  | |r
→

 − c
→

 = a 

   r
→

 − ( )i
→

 + 2 j
→

 + 3 k
→

 = 5 … (1) 

Cartesian Equation :  Let r
→

 = x i
→

 + y j
→

 + z k
→

 
 From (1) 

   ( )x i
→

 + y j
→

 + z k
→

 − ( )i
→

 + 2 j
→

 + 3 k
→

  = 5 

  | |(x − 1) i
→

 + (y − 2) j
→

 + (z − 3) k
→

 = 5 

  (x − 1)2 + (y − 2)2 + (z − 3)2 = 25 

  x2 + y2 + z2 − 2x − 4y − 6z − 11 = 0 
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Example 2.64 : Find the equation of the sphere on the join of the points A and B 

having position vectors 2 i
→

 + 6 j
→

 − 7 k
→

 and 2 i
→

 − 4 j
→

 + 3 k
→

 respectively as a 
diameter. 

Solution :  Vector equation of the sphere is ( )r
→

 − a
→

 . ( )r
→

 − b
→

 = 0 

 Here a
→

 = 2 i
→

 + 6 j
→

 − 7 k
→

 and b
→

  = 2 i
→

 − 4 j
→

 + 3 k
→

  

 Let r
→

 = x i
→

 + y j
→

 + z k
→

 
 The required equation is  

 ( )x i
→

+y j
→

 + z k
→

 −( )2 i
→

+6 j
→
−7 k
→

 . ( )x i
→

+y j
→

 + z k
→

 −( )2 i
→
−4 j
→

+3 k
→

  = 0 

[ ](x − 2) i
→

 + (y − 6) j
→

 + (z+7) k
→

 . [ ](x − 2) i
→

+(y+4) j
→

+(z−3) k
→

 = 0 …(1)             
Cartesian Equation : 
From (1) 
 (x − 2) (x − 2) + (y − 6) (y + 4) + (z + 7) (z − 3) = 0 

 ⇒  x2 + y2 + z2 − 4x − 2y + 4z − 41 = 0 
Example 2.65 : Find the coordinates of the centre and the radius of the sphere 

whose vector equation is r
→2

 − r
→

 . ( )8 i
→

 − 6 j
→

 + 10 k
→

 − 50 = 0 

Solution :  Let r
→

 = x i
→

 + y j
→

 + z k
→

 

  r
→2

 − r
→

 . ( )8 i
→

 − 6 j
→

 + 10 k
→

 − 50 = 0 

  r
→2

  = x2 + y2 + z2  

  ⇒ x2 + y2 + z2 − 8x + 6y − 10z − 50 = 0 

 Here 2u = coefficient of x = − 8  ⇒  u  =  − 4 

  2v = coefficient of y = 6  ⇒  v = 3   

  2w = coefficient of z = − 10  ⇒  w = − 5 

Centre : (− u, − v, − w)  =  (4, − 3, 5) 

Radius : u2 + v2 + w2 − d   =  16 + 9 + 25 + 50 = 100 = 10 uts. 

Example 2.66 : 

  Chord AB is a diameter of the sphere   r − ( )2 i
→

 + j
→

 − 6 k
→

 = 18 with 
coordinate of A as (3, 2, − 2) Find the coordinates B. 
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Solution :  The equation of the sphere is  r − ( )2 i
→

 + j
→

 − 6 k
→

 = 18 

 ⇒  Centre of the sphere is (2, 1, − 6) 

 (i.e.,) Position vector of the centre is 2 i
→

 + j
→

 − 6 k
→

 
We know that  
 Centre is the mid point of diameter AB 
 The co-ordinates of A are (3, 2, − 2) and let the coordinates of B be α, β, γ) 

  ∴ (2, 1, − 6) = 



α + 3

2  ,  
β + 2

2  , 
γ − 2

2  

  ⇒  α = 1,  β = 0,  γ = − 10 
 ∴ Coordinates of B are (1, 0, − 10) 

EXERCISE 2.11 
  (1) Find the vector equation of a sphere with centre having position vector 

2 i
→

 − j
→

 + 3 k
→

 and radius 4 units. Also find the equation in cartesian 
form. 

 (2) Find the vector and cartesian equation of the sphere on the  

join of the points A and B having position vectors 2 i
→

 + 6 j
→

 − 7 k
→

 and 

−2 i
→

 + 4 j
→

 − 3 k
→

 respectively as a diameter. Find also the centre and 
radius of the sphere. 

 (3) Obtain the vector and cartesian equation of the sphere whose centre  
is (1, −1, 1) and radius is the same as that of the sphere 

 r
→

 − ( )i
→

 + j
→

 + 2 k
→

 = 5. 

 (4) If A (− 1, 4, − 3) is one end of a diameter AB of the sphere  

  x2 + y2 + z2 − 3x − 2y + 2z − 15 = 0, then find the coordinates of B. 
 (5) Find the centre and radius of each of the following spheres. 

  (i)  r
→

 − ( )2 i
→

 − j
→

 + 4 k
→

 = 5 

  (ii)  2 r
→

 + ( )3 i
→

 − j
→

 + 4 k
→

 = 4  

  (iii) x2 + y2 + z2 + 4x − 8y + 2z = 5  

  (iv) r
→2 − r

→
 . ( )4 i

→
 + 2 j

→
 − 6 k

→
 − 11 = 0 

 (6) Show that diameter of a sphere subtends a right angle at a point on the 
surface. 
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3. COMPLEX NUMBERS 

3.1 Introduction : 
 The number system that we are aware of today is the gradual development 
from natural numbers to integers, from integers to rational numbers and from 
rational numbers to the real numbers. 

 If we consider the following polynomial equations (i) x − 1 = 0,   

(ii) x + 1 = 0,  (iii) x + 1 = 1,  (iv) 2x + 1 = 0 and (v) x2 − 3 = 0, we see that all 
of them have solutions in the real number system. However this real number 

system is not sufficient to solve equations of the form x2 + 9 = 0 i.e., there does 

not exist any real number which satisfies x2 = − 9. The mathematical need to 
have solutions for equations of the above form led us to extend the real number 
system to a new kind of number system that allows the square root of negative 
numbers. 

 Let us consider solution of a simple quadratic equation x2 + 16 = 0. Its 

solutions are x = ± 4 − 1 . We assume that square root of − 1 is denoted by the 
symbol i, called  the imaginary unit. Thus for any two real numbers a and b, we 
can form a new number a + ib. This number a + ib is called a complex number. 
The set of all complex numbers is denoted by ÷ and the nomenclature of a 
complex number was introduced by C.F. Gauss, a German mathematician. 
Hence the extension of the concept of numbers from real numbers enables one 
to solve any polynomial equation. The symbol i was first introduced in 
mathematics by the famous Swiss mathematician, Leonhard Euler  
(1707 – 1783) in 1748. ‘i’ is the first letter of the Latin word “imaginarius” and 
it is also referred to as ‘iota’, a Greek alphabet. Later on the subject was 
enriched by the original work of A.L. Cauchy, B. Riemann, K. Weierstrass and 
others. 

3.2 The complex number system : 
 A complex number is of the form a + ib where ‘a’ and ‘b’ are real numbers 

and i is called the imaginary unit, having the property that i2 = − 1. If z = a + ib 
then a is called the real part of z, denoted by Re(z) and b is called the imaginary 
part of z and is denoted by Im(z) . 

 Some examples of complex numbers are 3 − i2,  2  + i3,  − 
2
5  + i. 
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 Note that 3 is the real part and − 2 is the imaginary part of 3 − i2 and so on. 
 Two complex numbers a + ib and c + id are equal if and only if a = c and b 
= d. i.e., the corresponding real parts are equal and the corresponding imaginary 
parts are equal. The real numbers can be considered as a subset of the set of 
complex numbers with b = 0. Hence the complex numbers 0 + i0 and − 2 + i0 
represents the real numbers 0 and − 2 respectively. If a = 0 the complex number 
0 + ib or ib is called a pure imaginary number. 
Negative of a complex number : 
 If z = a + ib is a complex number then the negative of z is denoted by − z 
and it is defined as − z = − a + i(− b) 

Basic Algebraic operations : 
 Addition  : (a + ib) + (c + id) = (a + c) + i (b + d) 

 Subtraction : (a + ib) − (c + id) = (a − c)+ i(b − d) 
 To perform the operations with complex numbers we can proceed as in the 

algebra of real numbers replacing i2 by − 1 whenever it occurs. 

 Multiplication :  (a + ib) (c + id) = ac + iad + ibc + i2bd 

    = (ac − bd) + i (ad + bc) 

3.3 Conjugate of a complex number : 
 If z = a + ib, then the conjugate of z is denoted by z


  and is defined by  

z


  = a − ib 

 Division : 
a + ib
c + id = 

a + ib
c + id   ×  

c − id
c − id

  

 Multiplying the numerator and denominator by the conjugate of the 
denominator, we get 

   
a + ib
c + id = 





ac + bd

c2 + d2   +  i  




bc − ad

c2 + d2  

3.3.1 Properties : 
 (i) zz


  = (a + ib) (a − ib) = a2 + b2 which is a non-negative real number. 

 (ii) Conjugate of z


  is z  i.e.,  z
=

  = z 

 (iii) If z is real, i.e., b = 0 then z = z


 . Conversely, if z = z


 ,  
  i.e., if a + ib = a − ib then b = − b  ⇒ 2b = 0  ⇒  b = 0   
  (‡ 2 ≠ 0 in the real number system).  ∴  b = 0  ⇒  z is real. 
  Thus z is real ⇔ the imaginary part is 0 
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 (iv) Let z = a + ib. Then z


  = a − ib 

  ∴  z + z


  = (a + ib) + (a − ib) = 2a   

  ⇒ a = Re(z) = 
z + z



2  

      Similarly, b = Im(z) = 
z − z



2i  

 (v) The conjugate of the sum of two complex numbers z1, z2 is the sum of 

their conjugates i.e.,  z1 + z2


  = z1


  + z2


  

  Proof : Let z1 = a + ib and z2 = c + id 

  Then z1 + z2 = (a + ib) + (c + id) = (a + c) + i (b + d) 

   z1 + z2


  = (a + c) − i (b + d) 

   z1


  = a − ib,   z2


  = c − id 

   z1


  + z2


  = (a − ib) + (c − id) = (a + c) − i(b + d) 

    = z1 + z2


  

 Similarly it can be proved that the conjugate of the difference of two 
complex numbers z1, z2 is the difference of their conjugates. 

  i.e.,  z1 − z2


  =  z1


  − z2


  

 (vi) The conjugate of the product of two complex numbers z1, z2 is the 

product of their conjugates. 

  i.e.,   z1z2


  = z1


  z2


  

Proof :  Let z1 = a + ib and z2 = c + id. Then 

   z1 z2 = (a + ib) (c + id) = (ac − bd) + i(ad + bc) 

   z1z2


  = (ac − bd) − i(ad + bc) 

   z1


  = a − ib,   z2


  = c − id 

   z1


  z2


  = (a − ib) (c − id) = (ac − bd) − i(ad + bc) 

    = z1z2
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 (vii) The conjugate of the quotient of two complex numbers z1, z2, (z2 ≠ 0) 

is the quotient of their conjugates.   

   i.e.,    






z1

z2



 = 
z


1

z


2

   (without proof) 

 (viii) zn


 = ( )z


n

 

Example 3.1 : Write the following as complex numbers  

 (i) − 35 (ii) 3 − − 7 
Solution : 

 (i)  − 35 = (− 1) × (35)  =  − 1  .  35  =  i 35 

 (ii) 3 − − 7  =  3 − (− 1) × 7  =  3 − − 1 7   =  3 − i 7  
Example 3.2 : Write the real and imaginary parts of the following numbers : 

 (i) 4 − i 3 (ii) 
3
2  i 

Solution : 

 (i)  Let z = 4 − i 3  ;  Re(z) = 4,  Im(z) = − 3 

 (ii) Let z = 
3
2  i    ;    Re(z) = 0,   Im(z) = 

3
2 

Example 3.3 :  

 Find the complex conjugate of (i) 2 + i 7,   (ii) − 4 − i9     (iii) 5 
Solution : 
 By definition, the complex conjugate is obtained by reversing the sign of 
the imaginary part of the complex number. Hence the required conjugates are  
(i) 2 − i 7,  (ii) − 4 + i9 and  (iii) 5  (‡ the conjugate of any real number is 
itself). 
Example 3.4 :  
 Express the following in the standard form of a + ib 

 (i) (3 + 2i) + (− 7 − i) (ii) (8 − 6i) − (2i − 7) 

 (iii) (2 − 3i) (4 + 2i) (iv) 
5 + 5i
3 − 4i

 

Solution : 
 (i) (3 + 2i) + (− 7 − i) = 3 + 2i − 7 − i = − 4 + i 

 (ii)  (8 − 6i) − (2i − 7) = 8 − 6i − 2i + 7 = 15 − 8i 
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 (iii)  (2 − 3i) (4 + 2i) =8 + 4i − 12i − 6i2 = 14 − 8i 

 (iv)  
5 + 5i
3 − 4i

 = 
5 + 5i
3 − 4i

 × 
3 + 4i
3 + 4i   =  

15 + 20i + 15i + 20i2

32 + 42  

              = 
− 5 + 35i

25   =  
− 1
5   + 

7
5 i 

 Note :  i4 = 1 

  i3 = − i 

  i2 = − 1 

  (i)4n = 1 

  (i)4n − 1 = − i 

 (i)4n − 2 = − 1   ;  n ∈ z 
Example 3.5 : Find the real and imaginary parts of the complex number 

 z = 
3i20 − i19

2i − 1
   

Solution : 

 (i)  z = 
3i20 − i19

2i − 1
 = 

3(i2)
10

 − (i2)
9
i

2i − 1
   

    =  
3(− 1)10 − (− 1)9i

− 1 + 2i
  

    = 
3 + i

− 1 + 2i
  

    = 
3 + i

− 1 + 2i
 ×  

− 1 − 2i
− 1 − 2i

 

     = 
− 3 − 6i − i − 2i2

(− 1)2 + 22  

     = 
− 1 − 7i

5   =  
− 1
5   −  

7
5  i 

   Re(z) = − 
1
5  and Im(z) = 

− 7
5  

Example 3.6 : If z1 = 2 + i, z2 = 3 − 2i and z3 = 
− 1
2  + 

3
2  i 

 find the conjugate of   (i)  z1z2      (ii) (z3)4 
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Solution : 

 (i) Conjugate of z1z2 is z1 z2


 

  i.e. (2 + i) (3 − 2i)


 = (2 + i)


  (3 − 2i)


 
    = (2 − i) (3 + 2i) 
    = (2 − i) (3 + 2i) 

    = 6 + 4i − 3i − 2i2 = 6 + 4i − 3i + 2 
    = 8 + i 

 (ii)  z3
4


 =  z3


4

 = 





− 
1
2 + 

3
2  i

 4

 

    = 











− 

1
2 − 

3
2 i

2 2

  = 



1

4 + 
3

2 i + 
3
4 i2

2

  

    = 



−1

2  + 
3

2 i

2

  = 
1
4  − 

3
2   i + 

3
4 i2 

    = − 
1
2  −  

3
2  i 

EXERCISE 3.1 
 (1) Express the following in the standard form a + ib 

  (i) 
2(i − 3)

(1 + i)2 (ii) 
(1 + i) (1 − 2i)

1 + 3i  

  (iii) (− 3 + i) (4 − 2i) (iv) 
i4 + i9 + i16

3 − 2i8 − i10 − i15 

 (2) Find the real and imaginary parts of the following complex numbers: 

  (i) 
1

1 + i (ii) 
2 + 5i
4 − 3i

 (iii) (2 + i) (3 − 2i) 

 (3) Find the least positive integer n such that 



1 + i

1 − i

n

 = 1 

 (4) Find the real values of x and y for which the following equations are 
satisfied. 

  (i) (1 − i)x + (1 + i)y = 1 − 3i  

  (ii) 
(1 + i)x − 2i

3 + i   + 
(2 − 3i)y + i

3 − i
  = i 

  (iii) x2 + 3x + 8 + (x + 4)i = y(2 + i) 
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 (5) For what values of x and y, the numbers − 3 + ix2y and x2 + y + 4i are 
complex conjugate of each other? 

3.4 Ordered pair Representation : 
 In view of the representation of complex numbers, it is desirable to define 
a complex number a + ib as an ordered pair (a, b) of real numbers a and b 
subject to certain operational definitions. These definitions are as follows: 
 (i) Equality : (a, b) = (c, d)  if and only if a = c, b = d 
 (ii) Sum : (a, b) + (c, d) = (a + c, b + d) 

 (iii) Product : (a, b) . (c, d) = (ac − bd, ad + bc) 
   m(a, b) = (ma, mb) 

Result :  
 The imaginary unit i is defined as i = (0, 1). 
 We have (a, b) = (a, 0) + (0, b)  =  a(1, 0) + b(0, 1)  

  and (0, 1) (0, 1) = (0 − 1, 0 + 0) = (− 1, 0). 
 By identifying (1, 0) with 1 and (0, 1) with i we see that (a, b) = a + ib. 
 Thus we associate the complex number a + ib with the ordered pair (a, b). 
The ordered pair (0, 0) corresponds to the real number 0. 
Remark : 
 Though the set of real numbers is ordered, the set of complex numbers is 
not ordered. i.e., order relation does not exist in ÷. Given two complex numbers 
z1 and z2 we cannot say z1 < z2  or  z1 > z2. We can only say that  

z1 = z2 or z1 ≠ z2, since the points are represented in a plane. Thus the order 

relations ‘greater than’ and ‘less than’ are not definied for complex numbers. 
i.e., the inequalities like 1` + i > 3 − 2i, i > 0, (3 + i) < 2 etc. are meaningless. 

3.5  Modulus of a complex number : 
 Let z = a + ib be a complex number.  
 The modulus or absolute value of z denoted by | z | is defined by  

| z | = a2 + b2 

 From the definition, it is obvious that | |z


 = | z |. Since a2 + b2 = zz


 ,  

| z | =  zz


  (Taking the positive square root) 
Result :  Let z = x + iy 

 Now, x < x2 + y2, then Re(z) < | z |   for  y ≠ 0 … (1) 

 If y = 0 then x = | z | then Re(z) = | z |    … (2) 
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 Combining (1) and (2)    Re(z) ≤ | z |   

 Similarly Im(z) ≤ | z |   

Example 3.7 : Find the modulus of the following complex numbers: 
 (i) − 2 + 4i (ii) 2 − 3i (iii) − 3 − 2i (iv) 4 + 3i 
Solution : 

 (i)  | − 2 + 4i | = (− 2)2 + 42  =  20   =  2 5 

 (ii)  | 2 − 3 i | = 22 + (− 3)2  =  13 

 (iii)  | − 3 − 2i | = (− 3)2 + (− 2)2  =  13 

 (iv)  | 4 + 3i | = 42 + 32  =  25  =  5 

3.5.1 Properties : 

 If z1, z2, … zm are complex numbers, then the following properties hold. 

(i) The modulus of  a product of two complex numbers is equal to the product 
of their moduli. 

   i.e. |z1 z2 | = | z1 |   | z2 | 

Proof :  |z1 z2 |2 = (z1z2) z1 z2


  [‡ zz


  = | z |2] 

    = (z1 z2)  z1


   z2


  

    = ( )z1 z1


 ( ) z2  z2


  

    = | z1 |2   | z2 |2 

 Taking the positive square root on both sides, we get  

   |z1 z2 | = | z1 |   | z2 | 

Note : This result can be extended to any finite number of complex numbers  

 i.e.,  | z1 z2 … zn | = | z1 | | z2 |  …  | zn | 

(ii) The modulus of a quotient of two complex numbers is equal to the quotient 
of their moduli. 

  i.e., 






z1

z2
 = 

| z1 |
| z2 |  where z2 ≠ 0. 
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Proof :  Since z2 ≠ 0,    z1 = 






z1

z2
 . z2 and so  | z1 | = 







z1

z2
 | z2 |  (by the previous 

result) 

 Therefore  
| z1 |
| z2 |  = 







z1

z2
 

 Hence 






z1

z2
 = 

| z1 |
| z2 |  

(iii) Triangle inequality : 

 The modules of sum of two complex numbers is always less than or equal 
to the sum of their moduli. 

 i.e., | z1 + z2 |  ≤  | z1 |  +  | z2 | 

Proof :  Let z1 and z2 be two complex numbers. 

We know that  | z1 + z2 |2 = (z1 + z2) (z1 + z2)


  [‡ | z |2 = zz


  ] 

    = (z1 + z2) ( )z1


 + z2


 

    = z1 z1


  + z1 z2


 + z2 z1


  + z2 z2


  

    = z1 z1


  + z2 z2


  + z1 z2


 + z1 z2


 


 

    = | z1 |2 + | z2 |2 + 2 Re ( )z1 z2


 

    ≤ | z1 |2 + | z2 |2  + 2 | z1 z


2 |         [‡ Re (z) ≤ | z |]

    = | z1 |2 + | z2 |2 +  2 | z1|  | z2|           ‡ | z


  |  =  | z | 

    = [ | z11 + | z2 |]2 

   ∴ | z1 + z2 |2 ≤ [| z1 | + | z2 |]2 

 Thus taking positive square root we get  

   | z1 + z2 | ≤ | z1 |  +  | z2 | 

Note : 1  Writing − z2 for z2 in this result  

 We also have | z1 − z2 |  ≤  | z1 |  +  | − z2 | ⇒ | z1 − z2 |  ≤   | z1 |  +  | z2 | 
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Note : 2 
 The above inequality can be immediately extended by induction to any 
finite number of complex numbers   i.e.,  for any n complex numbers  
z1, z2, z3, …, zn 

 |z1 + z2 + z3 + … + zn |  ≤  | z1 |  +  | z2 |  +  … + | zn | 

(iv) The modulus of the difference of two complex numbers is always greater 
than or equal to the difference of their moduli. 

Proof : Let z1 and z2 be two complex numbers. 

We know that  | z1 − z2 |2 = (z1 − z2) (z1 − z2)


  [Q| z |2 = z z


  ] 

    = (z1 − z2) ( )z1


 − z2


 

    = z1 z1


  − z1 z2


 − z2 z1


  + z2 z2


  

    = z1 z1


  + z2 z2


  − 2 Re ( )z1  z2


 

    ≥ | z1 |2 + | z2 |2 − 2 | z1 z


2 |     [Q Re (z) ≤ | z | 

           − Re (z) ≥ − | z |] 

    = | z1 |2 + | z2 |2 − 2 | z1 |   | z2


  | 

    = | z1 |2 + | z2 |2 − 2 | z1 |   | z2 | 

    = [ | z1| − | z2 |]2 

   ∴ | z1 − z2 |2 ≥ [| z1 | − | z2 |]2 

 Thus taking positive square root we get  
   | z1 − z2 | ≥ | z1 |  −  | z2 | 

Example 3.8 : Find the modulus or the absolute value of  
(1 + 3i) (1 − 2i)

(3 + 4i)   

Solution : 

   



(1 + 3i) (1 − 2i)

(3 + 4i)   = 
 | 1 + 3i |    | 1 − 2i |

| 3 + 4i |   

    = 
12 + 32 12 + (2)2

32 + 42
  =  

10 5
25

 

    = 
10 5

5    =  2 
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3.6. Geometrical Representation 

3.6.1 Geometrical meaning of a Complex Number 

 If real scales are chosen on two mutually perpendicular axes X′OX and 
Y′OY (called the x axis and y axis respectively), We can locate any point in the 
plane determined by these lines, by the ordered pair of real numbers (a, b) 
called rectangular co-ordinates of the point. 

 Since every complex number a + ib can 
be considered as an ordered pair (a, b) of 
real numbers, we can represent such 
number by a point P in the xy plane, 
called the complex plane. Such a 
representation is also known as the 
Argand diagram. The complex number 
represented by P can therefore be read as 
either (a, b) or a + ib.  

P(z)

| z 
|

y

x

 
Fig. 3.1 

With this representation the modulus of the complex number z = a + ib 

represents the distance between z and the origin i.e., | z | = a2 + b2. The 

complex number z = a + ib can also be represented by the vector OP
→

  
(Fig. 3.1) where P = (a, b) and pictured as an arrow from the origin to the point  
(a, b). To each complex number there corresponds one and only one point in the 
plane, and conversely to each point in the plane there corresponds one and only 
one complex number. Because of this we often refer to the complex number z as 
the point z. 

 Clearly, the set of real numbers (x, 0) corresponds to the x-axis called real 
axis. The set of all purely imaginary number (0, y) corresponds to the y-axis 
called the imaginary number axis. The origin identifies the complex number  
0 = 0 + i0. 

3.6.2 Polar form of a Complex Number : 

 Let (r, θ) be the polar co-ordinates of the point  

 P = P(x, y) in the complex plane corresponding to the complex number  

 z = x + iy.  
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 Then we get from the figure (Fig. 3.2), 

   cos θ = 
OM
OP  = 

x
r and sinθ = 

PM
OP =  

y
r  

  x = r cos θ  ;  y = r sin θ  

where  r = x2 + y2 = | x + iy | is called 
the modulus or the absolute value of  
z = x + iy denoted by mod z or | z |  
 (i.e., the distance from the origin to the 
point z) 

 
 
 
 
 
 
 
 

Fig. 3.2 

 tan θ = 
y
x ,  ∴ θ = tan−1 

y
x  is called the amplitude or argument of z = x + iy 

denoted by amp z or arg z and is measured as the angle which the line OP 
makes with the positive x-axis (in the anti clockwise sense). 
 Thus z = x + iy = r(cosθ + i sin θ) is called the polar form or the modulus 
amplitude form of the complex number. It is sometimes convenient to use the 
abbreviation cis θ for cos θ + i sin θ. 

 θ = tan−1 
y
x  is applicable only for first quadrant numbers i.e., x & y are 

positive. 
3.6.3 Principal Value : 
 The argument of z is not unique. Any two distinct arguments of z differ 
from each other by an integral multiple of 2π. In order to specify a unique value 
of arg z, we may restrict its value to some interval of length 2π. For this 
purpose, we introduce the concept of “principal value” for arg z as follows : 
 For an arbitrary z ≠ 0 the principal value of arg z is defined to be the 
unique value of z that satisfies − π < arg z ≤ π. 
Note : For z = 0, the argument is indeterminate. 
Results : 
(1) For any two complex numbers z1 and z2 

 (i) | z1 z2 |  = | z1 | . | z2 | (ii) arg (z1 . z2) = arg z1 + arg z2 

Proof : 
 Let z1 = r1 (cos θ1 + i sin θ1) and  z2 = r2 (cos θ2 + i sin θ2)  

then | z1 | = r1,   arg z1 = θ1   ;   | z2 | = r2,   arg z2 = θ2 

 z1.z2 = r1r2 (cos θ1 + i sin θ1) . (cos θ2 + i sin θ2) 

  = r1r2 [(cosθ1 . cos θ2 − sinθ1 . sin θ2) + 

i (sin θ1 . cos θ2 + cos θ1 . sin θ2)] 

r 

) θ

P(x,y)

y

xx

y

MO

r 

) θ

P(x,y)

y

xx

y

MO
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  = r1r2 [cos (θ1 + θ2) + i sin (θ1 + θ2)] 

 ∴  | z1 z2 | = r1r2  =  | z1 | . | z2 | and  

 arg (z1 z2) = θ1 + θ2 = arg z1 + arg z2 

Note :  
 This result can be extended to any finite number of complex numbers i.e., 

 (i)  | z1 . z2  …  zn |  =  | z1 | . | z2 |  …  | zn | 

 (ii) arg (z1 z2 … zn) = arg z1 + arg z2 + … + arg zn 

(2) For any two complex numbers z1 and z2 

 (i) 






z1

z2
  =  

| z1 |
| z2 | ,  (z2 ≠ 0) (ii) arg 







z1

z2
 = arg z1 − arg z2 

Proof : 
  Let z1 = r1 (cos θ1 + i sin θ1) and  z2 = r2 (cos θ2 + i sin θ2)  

 Then | z1 | = r1,   arg z1 = θ1 and  | z2 | = r2,   arg z2 = θ2 

 Now 
z1
z2

 = 
r1 (cos θ1 + i sin θ1)

r2 (cos θ2 + i sin θ2)
 

   = 
r1
r2

  
(cos θ1 + i sin θ1)  (cos θ2 − i sin θ2)

(cosθ2 + i sin θ2)  (cos θ2 − i sin θ2)
 

   = 
r1
r2

  
(cosθ1 cosθ2 + sinθ1 sinθ2) + i (sinθ1 cosθ2−cosθ1 sin θ2)

cos2θ2 + sin2θ2
 

   = 
r1
r2

  [cos (θ1 − θ2) + i sin (θ1 − θ2)] 

  ∴  






z1

z2
 = 

r1
r2

  =  
| z1 |
| z2 |   and  

  arg 




z1

z2
 = θ1 − θ2 = arg z1 − arg z2 

Exponential form of a Complex Number : 

 The symbol eiθ or exp (iθ) (called exponential of iθ) is defined by  

 eiθ = cos θ + i sin θ 
 This relation is known as Euler’s formula.  
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 If z ≠ 0  then z = r (cos θ + i sin θ) = reiθ. This is called the exponential 
form of the complex number z. By straight forward multiplication of  

eiθ1 = (cos θ1 + i sin θ1) and eiθ2 = cos θ2 + i sin θ2  

we have eiθ1.eiθ2 = ei(θ1+ θ2) 
Remarks : 
 (1) If θ1 = θ and θ2 = − θ   in the above definition  

  then we have eiθ . ei(− θ) = ei(θ − θ) = ei0 = 1 

  ⇒  ei(− θ) = 
1

eiθ . Thus writing ei(− θ) as e− iθ  

  we observe that e−iθ = 
1

eiθ 

 (2) If θ1 = θ2 = θ then (eiθ)
2
 = e2iθ . By mathematical induction it can be 

shown that (eiθ)
n
 = einθ where n = 0, 1, 2 …  

 (3) Since eiθ


  = e− iθ,  we see that, if z = reiθ then  z


  = re− iθ 

 (4) Two complex numbers z1 = r1eiθ1 and z2 = r2eiθ2 are equal if and only 

if r1 = r2 and θ1 = θ2 + 2nπ, n ∈ Z  (the set of all integers) 

General rule for determining the argument θ. 
Let z = x + iy θ = π − α θ = α 

 where x, y ∈ R θ = − π + α θ = − α 

Take α = tan−1 
| y |
| x |  

(i) Both cos θ and sin θ are + νe.  
z lies in the first quadrant. 

θ = α 

(ii) Sin θ is + νe, cos θ is − νe  
z lies in the second quadrant. 

θ = π − α 

(iii) Both sin θ and cos θ are − ve  
z lies in the third quadrant. 

θ = − π + α 

(iv) Sin θ is − νe and cos θ is + νe,  
z lies in the fourth quadrant. 

θ = − α 
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Example 3.9 : Find the modulus and argument of the following complex 
numbers :  

 (i) − 2 + i 2  (ii) 1 + i 3 (iii) − 1 − i 3 
Solution : 

(i)  Let  − 2 + i 2 = r(cos θ + i sin θ) 
 Equating the real and imaginary parts separately 

   r cos θ = − 2  r sin θ = 2 

   r2 cos2 θ  =  2  r2 sin2θ = 2 

   r2 (cos2θ + sin2θ) = 4 

   r = 4 = 2 

                                



cos θ = 

− 2
2  = 

− 1
2

sin θ  =  
2

2   =  
1
2

  ⇒  θ in the 2nd quadrant 

   θ = π − 
π
4 = 

3π
4  

  modulus r = 2,    argument θ = 
3π
4  

 Hence − 2 + i 2 = 2 



cos 

3π
4  + i sin 

3π
4  

(ii)  Let  1 + i 3 = r(cos θ + i sin θ) 

 Equating the real and imaginary parts separately 

   r cos θ = 1  r sin θ = 3 

   r2 cos2 θ  =  1  r2 sin2θ = 3 

   r2 (cos2θ + sin2θ) = 4 ⇒  r =  2 

                              



cos θ  =  

1
2

sinθ  =  
3

2

  ⇒ θ in the 1st quadrant 

   θ = 
π
3   



‡ θ = tan−1 

y
x   

  modulus r = 2,    argument θ = 
π
3 
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 Hence  1 + i 3 = 2 



cos 

π
3 + i sin 

π
3  

(iii)  Let  − 1 − i 3 = r(cos θ + i sin θ) 
 Equating the real and imaginary parts separately 

   r cos θ = − 1  r sin θ = − 3 

   r2 cos2 θ  =  1  r2 sin2θ = 3 

   r2 (cos2θ + sin2θ) = 4 

   ⇒   r = 2 

                              



cos θ  =  

− 1
2

sinθ  =  
− 3

2

  ⇒ θ  in the 3rd quadrant 

   θ = − π + 
π
3 = 

− 2π
3   

  modulus r = 2,    argument θ = 
− 2π

3  

 Hence − 1 − i 3 = 2 



cos 



− 2π

3  + i sin 



− 2π

3  = 2 



cos 

2π
3  − i sin 

2π
3  

Example 3.10 : If (a1 + ib1) (a2 + ib2) … (an + ibn) = A + iB, 

prove that (i) (a1
2 + b1

2)  (a2
2 + b2

2)  …  (an
2 + bn

2) = A2 + B2 

 (ii) tan−1 






b1

a1
 + tan−1 







b2

a2
 + … + tan−1 







bn

an
 = kπ + tan−1 



B

A , k ∈ Z 

Solution : 

 Given (a1 + ib1) (a2 + ib2) … (an + ibn) = A + iB 

 | (a1 + ib1) (a2 + ib2) … (an + ibn) | =  | A + iB | 

 | (a1 + ib1) |   | (a2 + ib2) | … | (an + ibn) | =  | A + iB | 

 a1
2 + b1

2  a2
2 + b2

2  …  an
2 + bn

2  =  A2 + B2 

Squaring on both sides 

 (a1
2 + b1

2) (a2
2 + b2

2) … (an
2 + bn

2) = A2 + B2 

Also 

 arg [(a1 + ib1) (a2 + ib2) … (an + ibn)] = arg (A + iB) 
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 arg (a1 + ib1) + arg (a2 + ib2) … + arg (an + ibn) = arg (A + iB) … (1) 

 Now arg  (ai + ibi)  =  tan−1 





bi

ai
 

Hence (1) becomes 

 tan−1 






b1
a1

 + tan−1 






b2
a2

 + … + tan−1 






bn
an

 = tan−1 


B

A  

 By taking the general value, 

 tan−1 




b1

a1
 + tan−1 





b2

a2
 + … + tan−1 





bn

an
 = kπ + tan−1 



B

A  

Example 3.11 :  
 P represents the variable complex number z, find the locus of P if 

 (i) Re 



z + 1

z + i  = 1        (ii)  arg 



z − 1

z + 1   =  
π
3 

Solution : 
 Let   z = x + iy then  

  (i) 
z + 1
z + i  = 

x + iy + 1
x + iy + i   =  

(x + 1) + iy
x + i(y + 1) 

    = 
[(x + 1) + iy]
x + i(y + 1)   ×  

[x − i(y + 1)]
[x − i(y + 1)]

  

    = 
x(x + 1) + y(y + 1) + i(yx − xy − x − y − 1)

x2 + (y + 1)2  

    = 
x(x + 1) + y(y + 1) + i(− x − y − 1)

x2 + (y + 1)2  

 Given that  Re 



z + 1

z + i  = 1 

   ∴ 
x(x + 1) + y(y + 1)

x2 + (y + 1)2  = 1 

  ⇒   x2 + y2 + x + y = x2 + y2 + 2y + 1 

   ⇒   x − y = 1 which is a straight line. 

 ∴ The locus of P is a straight line. 

 (ii)  arg 



z − 1

z + 1   =  
π
3 
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  ∴ arg (z − 1) − arg (z + 1) = 
π
3 

  arg(x + iy − 1) − arg (x + iy + 1) = 
π
3 

  arg [(x − 1) + iy] − arg [(x + 1) + iy] = 
π
3 

  tan−1 
y

x − 1
  −  tan−1 

y
x + 1 = 

π
3 

  tan−1 







y

x − 1
 − 

y
x + 1

1 + 



y

x − 1
 



y

x + 1

 = 
π
3 

 ⇒ 
2y

x2 − 1 + y2 = tan 
π
3 

  
2y

x2 + y2 − 1
 = 3 

  2y = 3x2 + 3y2 − 3 

  ∴ 3x2 + 3y2 − 2y − 3 = 0  is the required locus. 
Result : (without proof) : 
 If | z − z1 | = | z − z2 | then the locus of z is the perpendicular bisector of the 
line joining the two points z1 and z2. 

3.6.4 Geometrical meaning of conjugate of a complex number : 
 
 Let z = x + iy be a complex number 
represented by P in the Argand diagram. 

Then we know that its conjugate z


  is 

given by z


 = x − iy. 

 i.e., z = (x, y) ⇒  z

 = (x, − y) 

 ∴ If Q represents the conjugate z


, then 
conjugate of z is obviously the mirror 
image of the complex point z on the real 
axis (Fig. 3.3). This clearly indicates that 

)θ
)-θ

P ( z )

Q ( z  )

r

r

x

y

O

 
Fig. 3.3 

z = z


  ⇔  z is purely a real number. Also z
=

 = z. 
 In polar coordinates let 
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   z = r(cos θ + i sin θ) then 

   z


 = r(cos (− θ) + i sin (− θ))   so if  

   z = (r, θ)  then z


 = (r, − θ) 

 Thus the moduli of both z and z


 are same i.e., r = x2 + y2 But the 

amplitude of z is θ and that of z


 is − θ. Hence  | |z


 = | z | and  

amp  z


 =  − amp z. 
 
 
 
 Fig. 3.4 gives the simple geometric 
relations among the complex number z, 

its negation − z and its conjugate z


 
 − z = (− x, − y). It is the point 
symmetrical to z about the origin. 
 

z

- z

O x

y

z  
Fig. 3.4 

3.6.5 Geometrical representation of sum of two complex numbers 
 Let A and B represent the two complex numbers z1 = x1 + iy1 and  
z2 = x2 + iy2 in the Argand diagram. Complete the parallelogram OACB. Then C 
represents the complex number z1 + z2. 

Proof : 
 Since OACB is a parallelogram, 
diagonals OC and AB bisect at M. 
 ∴ From Fig. 3.5, the midpoint M of the 
line joining A(x1, y1) and B(x2, y2) is 

 



x1 + x2

2  , 
y1 + y2

2  … (1) 

 If C is (h, k) then midpoint M of OC is 

also given by 



0 + h

2  , 
0 + k

2  

M

O

A ( z1 )

B( z2 )

C (z1+z2)

x

y

Fig. 3.5 

 i.e., M is 



h

2  ,  
k
2  … (2) 

 ∴ From (1) and (2) 

  
h
2 = 

x1 + x2
2    ;   

k
2  =  

y1 + y2
2    

  ⇒  h = x1 + x2  ;  k = y1 + y2 
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 ∴  C is (x1 + x2,   y1 + y2) 
 Hence C represents the complex number, z1 + z2 

Note :  OA = | z1 |,   OB = | z2 | and OC = | z1 + z2 | 

 In any triangle the sum of two sides is greater than the third side. 
 ∴ from ∆OAC we have OA + AC > OC  or  OC < OA + AC 
  | z1 + z2 |  <  | z1 | + | z2 | … (1) 

 Further, if the points are collinear  
  | z1 + z2 |  =  | z1 | + | z2 | … (2) 

 Combining (1) and (2) we get 
  | z1 + z2 |  ≤  | z1 | + | z2 | 

 This is the reason why this inequality is called the triangle inequality. 
3.6.6 Vector interpretation of complex numbers : 
 Let A and B represent the two complex numbers z1 = x1 + iy1 and  
z2 = x2 + iy2 in the Argand diagram. Complete the parallelogram OACB. Then C 
represents the complex number z1 + z2. 

 A complex number z = x + iy can 
be considered as a vector OP whose 
initial point is the origin O and 
whose terminal point is  
P = P(x, y). We sometimes call  
OP = x + iy the position vector of 
P. Two vectors having the same 
length or magnitude and the same 
direction but different initial points 
such as OP and AB are considered 
equal. (Fig. 3.6) ∴ OP=AB = x + iy 

O

P (x,y)

A

By

x
 

Fig. 3.6 

 Based on the above interpretation 
of complex numbers as vectors, 
addition of complex numbers 
corresponds to the “parallelogram 
law” for addition of vectors. Thus 
to add the complex numbers z1 and 
z2, we complete the parallelogram 

OABC whose sides OA and OC 
correspond to z1 and z2. The 

diagonal OB of this parallelogram 
corresponds to z1 + z2. (Fig. 3.7) 

z 1 
+ z 2

z2

z1

z1

z2

x

y

O

A

B

C

 
Fig. 3.7 
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3.6.7. Geometrical representation of difference of two complex 
numbers 
 Let A and B represent the two 
complex numbers  z1 = x1 + iy1 and 
z2 = x2 + iy2 respectively in the 

Argand diagram. Produce BO to B′ 
such that OB′ = OB. Then B′ 
represents the complex number  
− z2. Complete the parallelogram 

OADB′. Then D represents the sum 
of the complex numbers z1 and  

− z2 or z1 − z2   i.e., D represents 

the difference of complex numbers 
z1 and z2. (Fig. 3.8) 

D(z1 - z2)

A(z1)

B(z2)

x

y

O

C(z1+z2)

B′(-z2)
 

Fig. 3.8 

Result :  
 From the diagram OD = AB. But OD = | z1 − z2 |. AB is the distance 
between z1 and z2. Thus, distance between two complex numbers z1 and z2 is  

| z1 − z2 | . 

Note :  
 Complete the parallelogram OACB. Then C represents the complex 
number  z1 + z2. 

3.6.8 Geometrical representation of product of two complex 
numbers: 
 Let A and B represent the two 
complex numbers z1 and z2 

respectively in the Argand diagram. 
Let z1 = r1 (cos θ1 + i sin θ1) and  

z2 = r2 (cos θ2 + i sin θ2) 

 Then OA = r1,  XOA  = θ1 

 OB = r2, XOB  = θ2 . 

 Take a point L on OX such that OL 
= 1 unit. Draw the triangle OBC 
directly  similar to ∆ OLA. (Fig. 3.9) 

O x

y

C (z1, z2)

B (z2)

A (z1)

L (1,0)
) θ1

r1
r 2

ϕ (

) θ
1

ϕ (

θ 2

 
Fig. 3.9 
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 then  
OB
OL = 

OC
OA i.e.,  

r2
1   =  

OC
r1

 

   ∴ OC = r1r2 

 Also  XOC  = XOB  + BOC  

    = XOB  + XOA   

    = θ2 + θ1  or  θ1 + θ2  ( )‡ XOA  = BOC  

 ∴ The point C represents the complex number z1z2 with polar coordinates 

(r1 r2,  θ1 + θ2) 

Note :  

 If P represents the complex 
number  

 z = r (cos θ + i sin θ) = reiθ  

then the effect of multiplication by 

(cos α+ i sin α) = eiα is the rotation  

x

y

Q (-y, x)

P (x,y)

i z
x

- y O
x

y
z

 
Fig. 3.10 

of P(z) counter clockwise about O through an angle α.  

 In particular, since i = cos 
π
2 + i sin 

π
2= e

iπ
2 , the effect of multiplication of 

any complex numbers P(z) by i  is the rotation of P counter clockwise about the 
origin  through an angle 90°. (Fig. 3.10) 

3.6.9 Geometrical representation of the quotient of two complex 
numbers 
 Let A and B represent two complex 
numbers z1 and z2 in the Argand 

diagram.  

 Let z1 = r1(cos θ1 + i sin θ1) and  

z2 = r2 (cos θ2 + i sin θ2) ; (z2 ≠ 0) 

 Then OA = r1,  XOA  = θ1 

 OB = r2, XOB  = θ2 . 

 Take a point L on OX such that OL 
= 1 unit. Draw the triangle OAC 
directly similar to ∆ OBL. (Fig. 3.11) 

O x

y

A (z1)

C (z1/z2)

B (z2)

L (1,0)
) θ2

r 1

r2

ϕ 
(

 1 

) θ
2

ϕ (θ 1

 
Fig. 3.11 
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 then  
OA
OB = 

OC
OL i.e.,  

r1
 r2

  =  
OC
1  

   ∴ OC = 
r1
r2

 

   XOC  = XOA  − COA   =  θ1 − θ2 

 ∴ C is the point whose polar coordinates are 






r1
r2
,  θ1 − θ2  . Hence C 

represents the complex number  
z1
z2

 

Example 3.12 : Graphically prove that | z1 + z2 + z3 |  ≤  | z1 | + | z2 |  +  | z3 | 

Solution : 
 By triangle inequality in ∆OAB, 
 | z1 + z2 |  ≤  | z1 | + | z2 | …(1) 

 By triangle inequality in ∆OBP, 
 | z1 + z2 + z3 |  ≤  | z1+ z2 | + | z3| 

 ≤ | z1 | + | z2 | + | z3 |   from (1) 

∴| z1 + z2 + z3 |  ≤  | z1 | + | z2 | + | z3 |    

| z1+z2+z3|

| z2|

| z3|

| z
1
|

 O 

P

A

B

y

x

| z 1
+z 2

|

 
Fig. 3.12 

Example 3.13 : Prove that the complex numbers 3 + 3i, − 3 − 3i, − 3 3 + 3 3 i 
are the vertices of an equilateral triangle in the complex plane. 
Solution : 
 Let A, B and C represent the 
complex numbers  (3 + 3i),  
(− 3 − 3i) and (− 3 3 + i3 3) in 
the Argand diagram. 

 AB = | (3 + 3i) − (− 3 − 3i) |   

   = | 6 + 6i | = 72 

B (-3,-3 )

A (3,3)

C(-3 √3, 3 √3 )

x

y

 
Fig. 3.13 

  BC = | |(− 3 − 3i) − ( )− 3 3 + 3 3i   

   = | |( )− 3 + 3 3  + i ( )− 3 − 3 3  = 72 
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  CA = | |( )− 3 3 + 3 3i  − (3 + 3i)  

   = | |( )− 3 3 − 3  + i ( )3 3 − 3  = 72 

    AB = BC  =  CA 

 ∴ ∆ ABC is an equilateral triangle. 
Example 3.14 : Prove that the points representing the complex numbers  
2i, 1 + i, 4 + 4i and 3 + 5i on the Argand plane are the vertices of a rectangle. 
Solution : 

 Let A, B, C and D represent the 
complex numbers 2i, (1 + i), (4 + 4i) and 
(3 + 5i) in the Argand diagram 
respectively. 

 AB = | 2i − (1 + i) |   

  = | − 1 + i  | = (− 1)2 + (1)2 = 2 

 BC = | (1 + i) − (4 + 4i) |  

   = | − 3 − 3i | 

y

x
A

 (
0,

 2
)

B (1,1 )

C (4,4)

D (3,5)

 
Fig. 3.14 

   = (− 3)2 + (− 3)2 = 9 + 9 = 18 

  CD = | (4 + 4i) − (3 + 5i) | 

   = | 1 − i |  =  12 + (− 1)2 = 2 

  DA = | (3 + 5i) − 2i | = | 3 + 3i | = 32 + 32 = 18 

 ∴  AB = CD and BC = DA 

  AC = | (0 + 2i) − (4 − 4i) | 

   = | − 4 − 2i | 

   = (− 4)2 + (− 2)2  =  16 + 4 = 20 

  AB2 + BC2 = 2 + 18 = 20 

  AC2 = 20 

 Hence AB2 + BC2 = AC2   

    As pairs of opposite sides are equal and  B  = 90°,  ∴ ABCD is a rectangle. 

Example 3.15 : Show that the points representing the complex numbers  

 7 + 9i, − 3 + 7i, 3 + 3i form a right angled triangle on the Argand diagram. 
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Solution : 
 Let A, B and C represent the complex 
numbers  

 7 + 9i, − 3 + 7i and 3 + 3i in the 
Argand diagram respectively.  

 AB = | (7 + 9i) − (− 3 + 7i) | 

  = | 10 + 2i |  =  102 + 22 = 104 

 BC = | (− 3 + 7i) − (3 + 3i) | 

x
O

C(3,3)

B(-3, 7)
A(7,9)

 
Fig. 3.15 

   = | − 6 + 4i | 

   = (− 6)2 + 42 = 36 + 16 = 52 

  CA = | (3 + 3i) − (7 + 9i) | 

   = | − 4 − 6i | 

   = (− 4)2 + (− 6)2 = 16 + 36 = 52 

  ⇒  AB2 = BC2 + CA2 

  ⇒  BCA  = 90° 

 Hence ∆ABC is a right angled isosceles triangle. 

Example 3.16 : Find the square root of (− 7 + 24i) 
Solution : 

 Let − 7 + 24i  = x + iy 
 On squaring, 

  − 7 + 24i = (x2 − y2) + 2ixy 
 Equating the real and imaginary parts 

  x2 − y2 = − 7 and 2xy = 24 

  x2 + y2 = (x2 − y2)
2
 + 4x2y2 

   = (− 7)2 + (24)2 = 25 

 Solving,  x2 − y2 = − 7 and x2 + y2 = 25 

 we get x2 = 9  and y2 = 16 
  ∴ x = ± 3  and y = ± 4 
 Since xy is positive, x and y have the same sign. 

 ∴ (x = 3, y = 4)  or (x = − 3, y = − 4) 

  ∴ − 7 + 24i = (3 + 4i)  or  (− 3 − 4i) 
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EXERCISE 3.2 
 (1) If (1 + i) (1 + 2i) (1 + 3i) … (1 + ni) = x + iy 

  show that 2.5.10 … (1 + n2) = x2 + y2 
 (2) Find the square root of (− 8 − 6i) 

 (3) If z2 = (0, 1) find z. 
 (4) Prove that the triangle formed by the points representing the complex 

numbers (10 + 8i), (− 2 + 4i) and (− 11 + 31i) on the Argand plane is 
right angled. 

 (5) Prove that the points representing the complex numbers (7 + 5i), (5 + 2i), 
(4 + 7i) and (2 + 4i) form  a parallelogram. (Plot the points and use 
midpoint formula). 

 (6) Express the following complex numbers in polar form. 
   (i) 2 + 2 3 i (ii) − 1 + i 3 (iii) − 1 − i (iv) 1 − i 

 (7) If arg (z − 1) = 
π
6 and arg (z + 1) = 2 

π
3  then prove that | z | = 1 

 (8) P represents the variable complex number z. Find the locus of P, if 

  (i) Im 



2z + 1

iz + 1  = − 2 (ii) | z − 5i | = | z + 5i | 

  (iii) Re 



z − 1

z + i  = 1 (iv) | 2z − 3 | = 2               (v)  arg 



z − 1

z + 3  = 
π
2  

3.7 Solutions of polynomial equations : 

 Consider the quadratic equation x2 − 4x + 7 = 0 

 Its discriminant is b2 − 4ac = (− 4)2 − (4) (7) (1) 

    = 16 − 28 = − 12  which is negative. 

 ∴ The roots of this quadratic equation are not real. The roots are given by 

   
− (− 4) ± − 12

2  = 
4 ± − 12

2  = 2 ± i 3 

 Thus we see that the roots 2 + i 3 and 2 − i 3 are conjugate to each other. 
 We shall now consider the cube roots of unity. 
 Let x be the cube root of unity then 

   x = (1)
1
3 

   ⇒  x3 = 1 

   ⇒  (x − 1) (x2 + x + 1) = 0 
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   ∴ x − 1 = 0   ;  x2 + x + 1 = 0 

 Hence x = 1 and x = 
− 1 ± 1 − (4) (1) (11)

2  

 ∴ Cube roots of unity are 1, 
− 1 + 3 i

2  ,  
− 1 − 3i

2   

 Here again the two complex roots 
− 1 + 3 i

2  and 
− 1 − 3i

2  are conjugate 

to each other. 
 From the above two examples one can infer that in an equation with real 
coefficients, imaginary roots occur in pairs (i.e., one root is the conjugate of the 
other). This paved the way for the following theorem. 
Theorem : 
 For any polynomial equation P(x) = 0 with real coefficients, imaginary 
(complex) roots occur in conjugate pairs. 
Proof : 

 Let P(x) = anxn + an−1xn− 1 + … + a1x + a0 = 0 be a polynomial equation 

of degree n with real coefficients. 

 Let z be a root of P(x) = 0. We show that z


  is also a root of P(x) = 0. 
 Since z is a root of P(x) = 0  

   P(z) = anzn + an − 1zn − 1 + … + a1z + a0 = 0 … (1) 

 Taking the conjugate on both sides 

   P(z)


  = anzn + an − 1zn − 1 + … + a1z + a0


  = 0


  

 Using the idea that the conjugate of the sum of the complex numbers is 
equal to the sum of their conjugates, 

 anzn
 + an− 1zn− 1

 +  … + a1z


 + a0


  = 0 

 i.e.  an


  zn + an−1


  zn−1
 + … + a1


  z


  + a0


 = 0 

 Since zn = ( )z


n

   and  

 a0, a1, a2 … an are real numbers, each of them is its own conjugate and 

hence we get 

 an z
n + an − 1zn−1

 + … + a1z


  + a0 = 0 
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 which is same as P( )z


 = 0 

 This means z


  is also a root of P(x) = 0. 
 Hence the result. 

Example 3.17 : Solve the equation x4 − 4x2 + 8x + 35 = 0, if one of its roots is  
2 + 3 i 
Solution : 

 Since 2 + i 3  is a root, 2 − i 3 is also a root. 
 Sum of the roots = 4 
 Product of the roots ( )2 + i 3  ( )2 − i 3  = 4 + 3 = 7 

 ∴The corresponding factor is x2 − 4x + 7 

 ∴ x4 − 4x2+ 8x + 35 = (x2 − 4x + 7) (x2 + px + 5) 
 Equating x term, we get 8 = 7p − 20 ⇒ p = 4 

 ∴ Other factor is (x2 + 4x + 5) 

 ∴ x2 + 4x + 5 = 0  ⇒  x = − 2 ± i 
 Thus the roots are 2 ± i 3  and − 2 ± i 

EXERCISE 3.3 
 (1) Solve the equation x4 − 8x3 + 24x2 − 32x + 20 = 0 if 3 + i is a root. 

 (2) Solve the equation x4 − 4x3 + 11x2 − 14x + 10 = 0 if one root is 1 + 2i 

 (3) Solve : 6x4 − 25x3 + 32x2 + 3x − 10 = 0 given that one of the roots is 2 − i 

3.8 De Moivre’s Theorem and its applications : 
Theorem : 
 For any rational number n, cos nθ + i sin nθ  is the value or one of the 

values of (cos θ + i sin θ)n 
Proof : 
Case I : Let n be a positive integer. 
 By simple multiplication we have  

 (cosθ1 + isinθ1) (cosθ2 + isinθ2) = cos(θ1 + θ2) + isin(θ1 + θ2) 

 Similarly (cosθ1 + isinθ1) (cosθ2 + isinθ2) (cosθ3 + i sin θ3) 

= cos(θ1 + θ2 + θ3) + i sin(θ1 + θ2 + θ3) 

 By extending it to the product of n complex number we have 

 (cosθ1 + i sinθ1) (cosθ2 + i sinθ2) … (cosθn + i sinθn) 

= cos(θ1 + θ2 + … + θn) + i sin(θ1 + θ2 + … + θn) 
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 In this expression put θ1 = θ2 … = θn = θ, then 

 we have 

   (cos θ + isin θ)n = cosnθ + isin nθ 

Case II :  Let n be a negative integer and equal to − m ; (m is a +ve integer) 

   ∴  (cos θ + isinθ)n = (cosθ + isinθ)− m 

    = 
1

(cosθ + i sinθ)m   

    = 
1

cosmθ + i sin mθ by case I 

    = 
cos mθ − i sin mθ

(cos mθ + i sinmθ) (cosmθ − i sin mθ)
 

    = 
cosmθ − i sinmθ
cos2mθ + sin2mθ

 

    = cosmθ − i sinmθ 

    = cos(− m)θ + i sin(− m)θ 

    = cosnθ + i sinnθ 

Case III : Let n be a fraction and equal to 
p
q , where q is a positive integer and  

p is any integer.  

 Consider 



cos 

θ
q + i sin 

θ
q

q
 = cosθ + i sinθ 

 Therefore cos 
θ
q + i sin 

θ
q  is such that its qth power is cosθ + i sinθ. 

 Hence cos 
θ
q + i sin 

θ
q  is one of the values of (cos θ + i sin θ)

1
q. 

 Raise each of these quantities to the pth power. 

 ∴ 



cos 

θ
q + i sin 

θ
q

P
 is one of the values of 





(cos θ + i sinθ)
1
q  

p

 

 i.e.,  cos 
p
q θ + i sin 

p
q θ is one of the values of (cosθ + i sinθ)

p
q 

 ie.,  cos nθ + i sin nθ is one of the values of (cosθ + i sinθ)n. 
Note : De Moivre’s theorem holds good for irrational values also but the proof 
is beyond the scope of this book. 
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Properties : 

 (i)  (cosθ + i sinθ)− n = cos(− nθ) + i sin (− nθ) 

    = cos nθ − i sin nθ 

 (ii)  (cosθ − i sinθ)n = {cos(−θ) + i sin(− θ)}n 

    = cos (− nθ) + i sin(− nθ) 

    = cosnθ − i sin nθ 

 (iii)  (sinθ + i cosθ)n = 



cos 



π

2 − θ  + i sin 



π

2 − θ

n

 

    = cos n 



π

2 − θ  + i sin n



π

2 − θ  

Example 3.18 : Simplify : 
(cos 2θ + i sin 2θ)3 (cos 3θ − i sin 3θ)− 3

(cos 4θ + i sin 4θ )− 6 (cos θ + i sin θ)8  

Solution : 

  The given expression = 
(cos 2θ + i sin 2θ)3 (cos 3θ − i sin 3θ)− 3

(cos 4θ + i sin 4θ )− 6 (cos θ + i sin θ)8  

   = 
(ei2θ)

3
. (e−i3θ)

− 3

(ei4θ)
−6

 (eiθ)
8   =  

ei6θ  ei9θ

e−i24θ . ei8θ 

   = ei15θ . ei16θ 

   = ei31θ  =  cos31θ + i sin 31θ 

Alternative method : 

  The given expression = 
(cos θ + i sin θ)6 (cos θ + i sin θ)9

(cos θ + i sin θ )− 24 (cos θ + i sin θ)8 

   = (cos θ + i sin θ)6 + 9 + 24 − 8 

   = (cos θ + i sin θ)31 

   = cos 31θ + i sin 31θ 

Example 3.19 : Simplify : 
(cos θ + i sinθ)4

(sinθ + i cosθ)5  
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Solution : 

 
(cos θ + i sinθ)4

(sinθ + i cosθ)5   =  
(cos θ + i sinθ)4





cos



π

2 − θ  + i sin 



π

2 − θ
5  

   = cos 



4θ − 5 



π

2 − θ   + i sin 



4θ − 5 



π

2 − θ   

   = cos 



9θ − 

5π
2  + i sin 



9θ − 

5π
2  

   = cos 



5π

2  − 9θ  − i sin 



5π

2  − 9θ  

   = cos 



π

2 − 9θ  − i sin 



π

2 − 9θ  

   = sin 9θ − i cos 9θ 
Alternative method : 

 
(cos θ + i sinθ)4

(sinθ + i cosθ)5  = 
1

i5
   






(cos θ + i sinθ)4

(cosθ − i sinθ)5  

  = − i (cos 4θ + i sin 4θ ) (cos 5θ + i sin 5θ) 

  = − i [cos 9θ + i sin 9θ] 

  = sin 9θ − i cos 9θ 

Result : | z | = 1  ⇔ z


 = 
1
z 

Example 3.20 : If n is a positive integer, prove that 

 



1 + sinθ + i cosθ

1 + sinθ − i cosθ

n

  = cos n 



π

2 − θ   + i sin n 



π

2 − θ   

Solution : 
 Let  z = sinθ + i cosθ 

∴ 
1
z = sinθ − i cosθ 

 ∴  



1 + sinθ + i cosθ

1 + sinθ − i cosθ

n

  = 







1 + z

1 + 
1
z

n

 = zn = (sin θ + i cos θ)n 

   = 



cos



π

2 − θ  + i sin 



π

2 − θ
n
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   = 



cos n



π

2 − θ  + i sin n



π

2 − θ  

Example 3.21 : If n is a positive integer, prove that  

 ( )3 + i n + ( )3 − i n = 2n + 1  cos 
nπ
6  

Solution : 

 Let ( )3 + i = r(cosθ + i sin θ) 

 Equating real and imaginary parts separately, we have 

 r cos θ = 3  and  r sin θ = 1 

  ∴ r = ( )3 2 + 12  = 4 = 2 

  cos θ = 
3

2  ,  sinθ = 
1
2   ⇒  θ = 

π
6 

 Hence  ( )3 + i  = 2 



cos 

π
6 + i sin 

π
6  

  ( )3 + i n = 



2 



cos 

π
6 + i sin 

π
6

n

 = 2n




cos 

π
6 + i sin 

π
6

n

 

   = 2n




cos 

nπ
6  + i sin 

nπ
6  … (1) 

 To determine 3 − i, we replace i in the above result by − i we get 

   ( )3 − i  = 2



cos 

π
6 − i sin 

π
6  

  ∴ ( )3 − i
n
 = 2n 



cos 

nπ
6  − i sin 

nπ
6  … (2) 

 Adding (1) and (2) we have 

  ( )3 + i n + ( )3 − i
n
 = 2n 



2 cos 

nπ
6  

   = 2n + 1 . cos 
nπ
6  

Example 3.22 : If α and β are the roots of x2 − 2x + 2 = 0 and cot θ = y + 1, 

 show that 
(y + α)n − (y + β)n

α − β   =  
sin nθ
sinnθ

  

Solution : 

 The roots of the equation x2 − 2x + 2 = 0 are 1 ± i.  
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 Let α = 1 + i and β = 1 − i 

 Then (y + α)n = [(cotθ − 1) + (1 + i)]n 

   = (cotθ + i)n 

   = 
1

sinnθ
   [cosθ + i sinθ]n 

   = 
1

sinnθ
   [cosnθ + i sin nθ] 

 Similarly (y + β)n = 
1

sinnθ
   [cosnθ − i sin nθ] 

  (y + α)n − (y + β)n=  
2i sin nθ

sinnθ
  

 Further α − β = (1 + i) − (1 − i) = 2i 

  
(y + α)n − (y + β)n

α − β  = 
2i sin nθ
2i sinnθ

   =  
sin nθ
sinnθ

  

EXERCISE 3.4 

 (1) Simplify :   
(cos 2θ − i sin 2θ)7  (cos 3θ + i sin 3θ)− 5

(cos 4θ + i sin 4θ)12 (cos 5θ − i sin 5θ)− 6  

 (2) Simplify :  
(cos α + i sin α)3

(sin β + i cos β)4  

 (3) If cos α + cos β + cos γ = 0 = sin α + sin β + sin γ, prove that  
  (i) cos 3α + cos 3β + cos 3γ  = 3 cos (α + β + γ) 
  (ii) sin 3α + sin 3β + sin 3γ = 3 sin (α + β + γ) 
  (iii) cos 2α + cos 2β + cos 2γ = 0 
  (iv) sin 2α + sin 2β + sin 2γ = 0 
  (Hints : Take a = cis α, b = cis β, c = cis γ 
 a + b + c = 0 ⇒ a3+ b3 + b3 = 3abc 

 1/a  +  1/b  +  1/c = 0   ⇒  a2 + b2 + c2 = 0) 

  (v) cos2α +cos 2β  + cos2γ = sin2α + sin2β + sin2γ = 
3
2 

  For problems 4 to 9, m, n ∈ N 
 (4) Prove that 

  (i) (1 + i)n + (1 − i)n = 2
n + 2

2   cos 
nπ
4  
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  (ii) (1 + i 3)
n
 + (1 − i 3)

n
 = 2n + 1 cos 

nπ
3   

  (iii) (1 + cos θ + i sin θ)n + (1+cos θ − i sin θ)n = 2n + 1 cos 
n
(θ / 2)  cos 

nθ
2  

  (iv) (1 + i)4n and (1 + i)4n + 2 are real and purely imaginary respectively 

 (5) If α and β are the roots of the equation x2 − 2px + (p2 + q2) = 0 and  

tan θ = 
q

y + p  show that 
(y + α)n − (y +β)n

α − β   =  qn − 1  
sin nθ
sinnθ

 

 (6) If α and β are the roots of x2 − 2x + 4 = 0    

  Prove that αn − βn = i2n + 1 sin 
nπ
3  and deduct α 9 − β 9 

 (7) If x + 
1
x = 2 cos θ   prove that 

  (i) xn + 
1

xn = 2 cos nθ  (ii) xn − 
1

xn = 2 i sin nθ 

 (8) If x + 
1
x = 2 cos θ and y + 

1
y = 2 cos φ  show that 

  (i) 
xm

yn   +  
yn

xm = 2 cos (mθ − nφ) (ii) 
xm

yn   −  
yn

xm = 2 i sin (mθ − nφ) 

 (9) If x = cos α + i sin α ;   y = cos β + i sin β 

  prove that  xmyn + 
1

xmyn = 2 cos (mα + nβ) 

(10) If a = cos2α + i sin 2α,   b = cos2β + i sin 2β and c = cos 2γ + i sin 2γ  
prove that 

  (i) abc + 
1
abc

 = 2 cos (α + β + γ) 

  (ii) 
a2 b2 + c2

abc   =  2 cos 2(α + β − γ) 

3.9. Roots of a complex number 

Definition : 

 A number ω is called an nth root of a complex number z, if ωn = z and  

we write ω = z
1
n 
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Working rule to find the nth roots of a complex number : 
 Step 1 : Write the given number in polar form. 

 Step 2 : Add 2kπ to the argument 
 Step 3 : apply De Moivre’s theorem (bring the power to inside) 

 Step 4 : Put k = 0, 1 … upto n − 1 
Illustration : 
 Let z = r(cosθ + i sinθ) 

   = r{cos (2kπ + θ) + i sin (2kπ + θ)},  k is an integer. 

  ∴ z
1
n = [r{cos (2kπ + θ) + i sin (2kπ + θ)]

1
n 

   = r
1
n 



cos 



2kπ + θ

n  + i sin 



2kπ + θ

n  

  where k = 0,  1, 2 … (n − 1) 

 Only these values of k will give n different values of z
1
n  provided z ≠ 0 

Note : 
 (1) The number of  nth roots of a non-zero complex number is n. 
 (2) The moduli of these roots is the same non negative real number. 
 (3) The argument of these n roots are equally spaced. That is if θ is the 

principal value of arg z i.e., − π ≤ θ ≤ π  then the arguments of other 

roots of z are obtained by adding respectively 
2π
n  , 

4π
n  ,  …  to  

θ
n 

 (4) If k be given integral values greater than or equal to n, these n values 
are repeated and no fresh root is obtained. 

3.9.1 The nth roots of unity 
  1= (cos 0 + i sin 0) = cos 2kπ + i sin 2kπ  

  nth roots of unity = 1
1
n = (cos 2kπ + i sin 2kπ)

1
n 

   = 



cos 

2kπ
n  + i sin 

2kπ
n  where k = 0, 1, 2, … n − 1 

 ∴ The nth roots of unity are cos0 + i sin 0 ,   cos 
2π
n  + i sin 

2π
n  , 

 cos 
4π
n  + i sin 

4π
n  ,  cos 

6π
n  + i sin 

6π
n , ……, cos (n − 1) 

2π
n  + i sin (n − 1) 

2π
n  

  Let   ω = cos 
2π
n  + i sin 

2π
n  = e i 

2π
n  
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 Then the nth roots of unity are 

 e0, e i 
2π
n  ,  e i 

4π
n  ,  e i 

6π
n  ,  …  e i 

2(n − 1)
n  π

  become 1, ω,  ω2 … ωn − 1 . 
 It is clear that the roots are in geometric progression. 
Results : 

 (1) ωn = 1  

  ωn = 



cos 

2π
n  + i sin 

2π
n

n

 = cos 2π + i sin 2π = 1 

 (2) Sum of the roots is 0 

  i.e., 1 + ω + ω2 + … + ωn – 1 = 0 

  ‡  LHS = 1 + ω + ω2 + … + ωn – 1 is a G.P. with n terms. 

   = 
1.(1 − ωn)

1 − ω             ‡  





1 + r + r2 + … + rn − 1 =  
1 − rn

1 − r
 

   = 0  = R.H.S. 

 (3) The roots are in G.P with common ratio ω 

 (4) The arguments are in A.P with common difference 
2π
n  

 (5) Product of the roots = (− 1)n + 1 

3.9.2. Cube roots of unity : (1)
1
3  

 Let  x = (1)
1
3   

   ∴ x = (cos 0 + i sin 0)
1
3 

  = (cos 2kπ + i sin 2kπ)
1
3 , where k is an integer. 

 x = 



cos 

2kπ
3  + i sin 

2kπ
3  ,   where k = 0, 1, 2 

 The three roots are 

 cos 0 + i sin0,  cos 
2π
3  + i sin 

2π
3 ,   cos 

4π
3  + i sin 

4π
3  

  i.e., 1, − 
1
2 + i 

3
2 ,  − 

1
2 − i 

3
2  

 ∴ The roots are 1, − 
1
2 ± i 

3
2  
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Result : 

 The modulus of each root of (1)
1
3 is 1 

 ∴ All these roots lie on the 
circumference of the unit circle. Let A, B 
and C be points represented by the three 

roots 1, − 
1
2 ± i 

3
2  in ordered pair form. 

The angles between OA and OB, OB and 

OC, OC and OA are each  
2π
3  radians or 

120°. Hence when these points are joined 
by straight lines they will form the 
vertices of an equilateral triangle. 

y

x

12
0°

B

A

C

120°

12
0°

 
Fig. 3.16 

 If we denote the second root cos 
2π
3  + i sin 

2π
3  by ω  then the other root  

cos 
4π
3  + i sin 

4π
3  = 



 cos 

2π
3  + i sin 

2π
3

2

 becomes ω2. 

 Hence we observe that the cube roots of unity, namely 1, ω, ω2 are in G.P. 
Note : 

 (i) Even if 
− 1 − i 3

2   is taken as ω it can be proved that 
− 1 + i 3

2   = ω2 

 (ii) 1 + ω + ω2 = 0 (by actual addition) i.e., the sum of the cube roots of 
unity is zero. 

 (iii) Since ω is a root of the equation x3 = 1, we see that ω3 = 1. 

Fourth roots of unity : 

 Let x be a fourth root of unity. Then x = (1)
1
4    

 ∴  x4 = 1  = (cos 2kπ + i sin 2kπ)   where k is an integer. 

  x = (cos 2kπ + i sin 2kπ)
1
4 

   = 



cos 

2kπ
4  + i sin 

2kπ
4  

   = 



cos 

kπ
2  + i sin 

kπ
2    where k = 0, 1, 2, 3 
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 The four roots are  

 cos 0 + i sin 0, cos 
π
2 + i sin 

π
2,  cos π + i sin π, cos 

3π
2  + i sin 

3π
2  

 i.e.,  1, i, − 1(= i2), − i (= i3) . Let us denote cos 
π
2 + i sin 

π
2  by ω. Then the 

four roots of unity are 1, ω, ω2, ω3. 
 
 
 The fourth roots of unity form 
the vertices of a square all lying 
on the unit circle. 
 We observe that the sum of 
the fourth roots of unity is zero. 

 i.e., 1 + ω + ω2 + ω3 = 0 

 and ω4 = 1 

y

x
1

π/2

O
ω2

ω

ω3
 

Fig. 3.17 
Note : The values of ω used in cube roots of unity and in fourth roots of unity 
are different. 

Sixth roots of unity :   Let x be a sixth root of unity. Then x = (1)1/6   
  ∴  1 = cos 0 + i sin 0    

  (1)1/6 = (cos 2kπ + i sin 2kπ)1/6  
 where k is an integer. 
 By De Moivre’s theorem 

  x = (1)
1
6 = 



cos 

2kπ
6  + i sin 

2kπ
6  ,  where k = 0, 1, 2, 3, 4, 5 

 The six roots are 
  cos 0 + i sin 0  = 1 

  cos 
π
3 + i sin 

π
3  

  cos 
2π
3  + i sin 

2π
3   

  cos 
3π
3  + i sin 

3π
3   

  cos 
4π
3  + i sin 

4π
3   

  cos 
5π
3  + i sin 

5π
3   

y

x

ω

1

ω2

ω3

ω4 ω5
 

Fig. 3.18 
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 Then the six, sixth roots of unity are 1, ω, ω2, ω3, ω4, ω5  
 
 From the above figure it can 
be noted that the six roots of 
unity form the vertices of a 
hexagon all lying on the unit 
circle (Fig. 3.18). Thus it can be 
seen that the n, nth roots of unity 
form the vertices of n sided 
regular polygon all lying on the 
unit circle (Fig. 3.19). 

y

x1

ω
ω2

ωn-1

ωn-2

ωn-3

ω3

 
Fig. 3.19 

Example 3.23 : Solve the equation x9 + x5 − x4 − 1 = 0 
Solution : 
 x9 + x5 − x4 − 1 = 0 ⇒  x5 (x4 + 1) − 1 (x4 + 1) = 0 

  ⇒ (x5 − 1) (x4 + 1) = 0 

  ⇒ x5 − 1 = 0  ;  x4 + 1 = 0 

  x = (1)
1
5 ; (− 1)

1
4 

 (i) x = (1)
1
5  = (cos 0 + i sin 0)

1
5    

   = (cos 2kπ + i sin 2kπ)
1
5   

   =  cos 
2kπ
5  + i sin 

2kπ
5 ,  k = 0, 1, 2, 3, 4 

 (ii) (− 1)
1
4 = (cos π + i sin π)

1
4  

   = {cos (2k + 1)π + i sin (2k + 1)π}
1
4  

   = cos 
(2k + 1)π

4   + i sin 
(2k + 1)π

4    k = 0, 1, 2, 3 

 Thus we have 9 roots. 

Example 3.24 : Solve the equation x7 + x4 + x3 + 1 = 0 
Solution : 
 x7 + x4 + x3 + 1 = 0 ⇒  x4 (x3 + 1) + 1 (x3 + 1) = 0 

  ⇒ (x4 + 1) (x3 + 1) = 0 
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  x4 = − 1   ; x3 = − 1 

 (i) x = (− 1)
1
4 

   = (cosπ + i sin π)
1
4 

 i.e.,  = [cos (2kπ + π) + i sin (2kπ + π)]
1
4   

   = 



cos 

(2k + 1)π
4  + i sin 

(2k + 1)π
4    ;  k = 0, 1, 2, 3 

 (ii) x3 = − 1    ⇒  x = (− 1)
1
3 

   = (cos π + i sin π)
1
3 

   = [cos (2kπ + π) + i sin (2kπ + π)] 
1
3  

   = cos (2k + 1) 
π
3 + i sin (2k + 1) 

π
3 ,  k = 0, 1, 2 

Note : 

 The roots are 



cos 

π
4 + i sin 

π
4   ;  



cos 

3π
4  + i sin 

3π
4   ;  



cos 

5π
4  + i sin 

5π
4   

and  



cos 

7π
4  + i sin 

7π
4 ,  



cos 

π
3 + i sin 

π
3  ,  (cos π + i sin π)  and 





cos 

5π
3  + i sin 

5π
3  

 i.e.,  
1
2

 + i 
1
2

 ,   − 
1
2
 + i 

1
2

,   −  
1
2

 − i 
1
2

,  
1
2

 − i 
1
2

  

 
1
2 + i 

3
2  ,  − 1,  

1
2 − i 

3
2  

Example 3.25 : Find all the values of ( )3 + i
2
3  

Solution : 
  Let  3 + i = r (cos θ + i sin θ) 
   ⇒ r cosθ = 3 ,  r sin θ = 1 

   ⇒ r  =  ( )3
2
 + 1 = 2 

  Cos θ = 
3

2  ,   sin θ = 
1
2   ⇒   θ  =  

π
6 

  ∴ ( )3 + i
2
3 = 2

2
3  



cos 

π
6 + i sin 

π
6  

2
3 
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   = 2
2
3 











cos 

π
6 + i sin 

π
6

2

 

1
3
  

   = 2
2
3  



cos 

π
3 + i sin 

π
3  

1
3 

   = 2
2
3 



cos 



2kπ + 
π
3  + i sin 



2kπ + 
π
3  

1
3 

   = 2
2
3 



cos (6k + 1) 

π
9 + i sin (6k + 1) 

π
9   where k = 0, 1, 2 

Note: The values are  

 2
2
3 



cos 

π
9 + i sin 

π
9  ,  2

2
3 



cos 

7π
9  + i sin 

7π
9 ,  2

2
3 



cos 

13π
9  + i sin 

13π
9  

Aliter : 

  ( )3 + i
2
3 = 2

2
3 



cos 

π
6 + i sin 

π
6

2
3 

   = 2
2
3 



cos 



2kπ + 
π
6  + i sin 



2kπ + 
π
6  

2
3 

   = 2
2
3 



cos (12k + 1) 

π
6 + i sin (12k + 1) 

π
6  

2
3 

   = 2
2
3 



cos (12k + 1) 

π
9 + i sin (12k + 1) 

π
9    where k = 0, 1, 2 

 The different values are 2
2
3 



cos 

π
9 + i sin 

π
9  , 2

2
3  



cos 

13π
9  + i sin 

13π
9 ,   

2
2
3 



cos 

25π
9  + i sin 

25π
9     

 i.e., 2
2
3 



cos 

π
9 + i sin 

π
9 , 2

2
3  



cos 

7π
9  + i sin 

7π
9 , and  2

2
3 





cos 

13π
9  + i sin 

13π
9  since cos 

25π
9  + i sin 

25π
9  = cos 

7π
9  + i sin 

7π
9  

   Thus we have obtained the same values in this case also. 

Note : If we add 2kπ before taking the power 2 inside, we will get the same 
answer. 
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EXERCISE 3.5 
 (1) Find all the values of the following : 

  (i) (i)
1
3 (ii) (8i))

1
3 (iii) ( )− 3 − i

2
3 

 (2) If x = a + b,   y = aω + bω2,   z = aw2 + bω  show that 

  (i) xyz = a3 + b3 

  (ii)  x3 + y3 + z3 = 3 (a3 + b3)   where ω is the complex cube root of unity. 

 (3) Prove that if ω3 = 1,  then 

  (i)   (a + b + c)  (a + bω + cω2) (a + bω2 + cω) = a3 + b3 + c3 − 3abc 

  (ii)  



− 1 + i 3

2

5

 + 



− 1 − i 3

2

5

  =  − 1 

  (iii) 
1

1 + 2ω  −  
1

1 + ω  +  
1

2 + ω  =  0 

 (4) Solve : 

  (i) x4 + 4 = 0     (ii) x4 − x3 + x2 − x + 1 = 0    

 (5) Find all the values of 



1

2 − i 
3

2

3
4
 and hence prove that the product of the 

values is 1. 
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4. ANALYTICAL GEOMETRY 

4.1 Introduction : 
 Tracing the history of Mathematics, around 430 B.C., study of conic 
sections or conics, i.e., study of plane sections of a right circular cone began. 
The study included degenerate or singular conics (comprising single point, pair 
of distinct lines, two coincident lines etc., which were already dealt with in 
detail in lower classes) and non-degenerate or non-singular conics (comprising 
of circles, parabolas, ellipses and hyperbolas). 
 The study of conic sections from Greek Geometry, developed by 
Apollonius, is described today as graphs of quadratic equations in the  
co-ordinate plane. The Greek mathematicians of Plato’s time (429 − 347 B.C.) 
described these curves as the curves formed by slicing a double cone (right 
circular cone of two nappes) with a plane and hence the name conic sections. 
 Analytic Geometry grew out of need for establishing uniform techniques 
for solving geometrical problems, the aim being to apply them to the study of 
curves, which are of particular importance in practical problems. 
 The aim was achieved in the co-ordinate method viz., cartesian, polar,  
bi-polar (where calculations are fundamental and constructions play a 
subordinate role). Thus solving problems by the method of Analytical 
Geometry requires less inventiveness. This method of the ancient Greek origin  
(≈ 1 − 2 B.C.)  was systematically developed in the first half of the 17th century 
by great mathematicians Fermat, Descartes, Kepler, Newton, Euler, Leibnitz, 
L’Hôpital, Clairaut, Cramer and the Jacobis. 
 A major breakthrough in the study occurred with the development of the 
hypothesis of Planetary Phenomena by the German mathematician cum 
physicist Johannes Kepler. He stated that all the planets in the solar system 
including the earth are moving in elliptical orbits with sun at one of a foci, 
governed by inverse square law. This led to the development of Newton’s 
gravitation theory. 
 Euler applied the co-ordinate method in a systematic study of space curves 
and surfaces, which was further developed by Albert Einstein in his theory of 
relativity. 
 Needless to say that today the development in this area has conquered 
industry, medicine and scientific research. And we shall cite a few of them 
before getting into the depth of actual study of conics. 
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4.1.1 Geometry and Practical applications of a parabola : 

 
 A parabola is a conic section 

obtained on slicing a right circular cone 
by a plane parallel to the line joining 
vertex and any other point of the cone 
(Fig.4.1)  

Fig. 4. 1 
 If P is any point on the 

parabola with focus F and vertex 
V, the angles subtended by FP 
and PX with the tangent at P are 
equal where PX is parallel to the 
axis VFA of the parabola. (Fig. 
4.2) 

 
 
 
 
 

Fig. 4. 2 

 This property is made use of 
in parabolic reflectors (surface 
obtained by revolving the 
parabola about its axis and coated 
with silver paint) of sound, light 
and radio waves when the 
respective source is placed at the 
focus S as given in (Fig. 4.3). 
Light (or  sound  or  radio  waves)  

 
 
 
 
 

 
 

Fig. 4. 3 

from S falls on the reflecting surface gets reflected parallel to the axis of 
parabola. For example, Flash light, head light of motor vehicles, parabolic 
mirrors, spot light reflectors, selective microphone sounding boards etc. 
 The same reflectors can be 
employed in intensifying signals. 
Electromagnetic waves arriving 
parallel to the axis of the 
parabolic reflector will be 
focussed at the focus where a 
suitable receiver ‘R’ could be 
placed. (Fig. 4.4) 

 
 
 
 
 
 

Fig. 4. 4 

 For example, Radio telescope, television satellite dishes, solar heaters, 
radar antenna’s etc. 

 The strongest simple arch is parabolic in shape. 
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 The supporting cable of a uniformly loaded bridge is parabolic in shape 
(weight of cable neglected in comparison with weight of the bridge). 

 The path of an object thrown or projected obliquely upwards is a parabola. 
Also bombs dropped from a moving war plane or food packets dropped from 
helicopters during cyclone time to people in need (not moving vertically 
upwards or downwards) traces a parabola. 

 Some comets have parabolic path with sun at the focus. 

4.1.2 Geometry and Practical Applications of an ellipse : 

 
Fig. 4. 5 

 An ellipse is a conic obtained on 
slicing across obliquely one nappe of a 
cone. (Fig. 4.5) 

 If P is any point on the ellipse and 
F1and F2 its foci, the angle subtended by 
F1P and F2P with the tangent at P are 
equal and if a source of light or sound is 
placed at one focus of an ellipsoidal 
reflector (surface generated by revolving  
an  ellipse  about  its  major  axis) all the  
waves will be reflected so as to pass 
through the other focus (Fig. 4.6) 

 
 
 

Fig. 4. 6 

 This property is also used in “Wispering Gallery”, the roof or walls of 
which are shaped like an ellipsoidal reflector. 

 The ellipsoidal reflectors are designed for Nd : YAG (ND3+ Neodymium 
ions; YAG – Yttrium Aluminium Garnetz) laser that is widely used in medicine, 
industry and scientific research. 

 A light reflector in the form of a 
tube whose cross section is an ellipse 
has Nd : YAG rod and a linear flash 
lamp placed at the foci of the ellipse. 
(Fig. 4.7). Here light emitted from 
the lamp is effectively coupled to the 
Nd : YAG rod to produce laser beam. 

 In Bohr-Sommerfeld theory of 
the atom electron orbit can be 
circular or elliptical. 
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Fig. 4. 7 
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 The orbits of our planet earth and all other planets and planetoids in our 
solar system are elliptical with sun situated at one of the foci. Also all the 
satellites, either natural or artificial to all the planets in the solar system have 
elliptic orbits (with the force binding them following inverse square law). 
[Fig.4.8(a)] 

 
 
 
 

 
Fig. 4.8(a) 

 
 
 
 

Fig. 4.8(b) 

 Path of Halley’s Comet (which returns after every 75 years) is an ellipse 
with e  ≈  0.97 and the sun at a focus [Fig. 4.8 (b)], e being the eccentricity. 

 Elliptical arches are often used for their beauty. 

 Steam boilers are believed 
to have greatest strength when 
heads are made elliptical with 
major and minor axes in the 
ratio 2 : 1.  

Fig. 4. 9 
   Gears are sometimes (for particular need) made elliptical in shape (Fig. 4.9) 

 

Fig. 4. 10 

 The orbit of Comet Kohoutek is an ellipse with e ≈ 0.9999 (Fig. 4.10). 

 The shape of our mother earth is an oblate spheroid i.e., the solid of 
revolution of an ellipse about its minor axis, bulged along equatorial region and 
flat along the polar region. 

 The area of action of an airplane which leaves a moving carrier and returns 
in a given time (with no wind) is an ellipse with the take off and landing 
positions of the carrier as foci. 

 
 The track of a plane making an  

On-pylon turn in a wind of constant 
velocity is an ellipse with one focus 
directly over the pylon (Fig. 4.11). 

 
Fig. 4. 11 
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4.1.3 Geometry and Practical Applications of a Hyperbola : 

 

 A hyperbola is a conic obtained on slicing a 
double napped cone by a plane parallel to the axis 
of the cone (Fig.4.12) 

 

Fig. 4. 12 

 The lines from the foci to any point on 
a hyperbola make equal angles with the 
tangent at that point. Hence if the surface of 
a reflector is generated by revolving a 
hyperbola about its transverse axis, all rays 
of light converging on one focus are 
reflected to the other (Fig.4.13) 

 

 

 

 

Fig. 4. 13 

 This property is made use of in some 
telescopes in conjunction with a parabolic 
reflector. American space research 
foundation NASA’s Hubble space 
telescope uses hyperbolic reflectors in 
conjunction with parabolic reflectors 
(Fig. 4.14). 

 Hyperbolas are useful in range-
finding. (The difference in the times at 
which a sound is heard at two listening 
posts is proportional to the difference of 
the distances from the posts to the point 
of emanation of sound. A third listening 
post serves to give another hyperbola and 
the point of emanation is at the point of 
intersection of the two curves). 

 

Fig. 4. 14 

 Boyle’s law pv = constant is hyperbolic in relationship. The same is true of 
relationship of any two quantities, which are inversely proportional. 

 Hyperbolic paths arise in Einstein’s theory of relativity and form a basis 
for LORAN (Long Range Navigation) radio navigation system. 

P

F1F2

P
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4.2 Definition of a Conic : 
 Consider a circle C. Let A be the 
line through the centre of C and 
perpendicular to the plane of C and 
let V be a point on A not in the plane 
of C. Let P be a point on C and draw 
the infinite straight lines through P 
that also passes through V. As P 
moves around C, what sweeps out is 
called a right circular cone with the 
axis A and vertex V. Each of the lines  

 
 
 
 
 
 

 

Fig. 4. 15 

PV is called a generator of the cone, and the angle α between the axis and the 
generator is called a vertex angle (semi-vertical angle). The upper and lower 
portions of the cone that meet at the vertex are called nappes of the cone  
(Fig. 4.15).  
 The curves obtained by slicing the cone with a plane not passing through 
the vertex are called conic sections or simply conics. 
 A conic is the locus of a point which 
moves in a plane, so that its distance from 
a fixed point bears a constant ratio to its 
distance from a fixed straight line. 
(Fig.4.16) 
 The fixed point is called focus, the 
fixed straight line is called  directrix,  and  

 
 
 
 
. 
 

Fig. 4. 16 
the constant ratio is called eccentricity, which is denoted by ‘e’. 

 From the figure we have  
FP
PM  = constant = e 

4.2.1 General equation of a Conic : 
 Let F(x1, y1) be the focus, lx + my + n = 0, the equation of the directrix ‘l’ 

and ‘e’ the eccentricity of the conic. 
 Let  P(x, y) be any point on the conic. 
Drop a perpendicular from P to ‘l’. 

 FP = (x − x1)2 + (y − y1)2 

 PM = Perpendicular distance from 
P(x, y) to the line lx + my + n = 0 

  = ±  
lx + my + n

l2 + m2
  

 
 

 
 
 
 

Fig. 4. 17 
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By the definition of a conic,  
FP
PM  =  e 

              ∴ FP2 = e2 PM2 

 ∴ (x − x1)2 + (y − y1)2 = e2     






±  

lx + my + n

l2 + m2
 

2

 

 Simplifying this we get an equation of second degree in x and y of the form 

Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. 

4.2.2 Classification with respect to the general equation of a conic : 
 The equation Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 represents either a  
(non–degenerate) conic or a degenerate conic. If it is a conic, then it is   

 (i)   a parabola  if     B2 − 4AC = 0            (ii)  an ellipse  if    B2 − 4AC < 0 

 (iii) a hyperbola  if  B2 − 4AC > 0 

4.2.3. Classification of conics with respect to eccentricity : 
1. If e < 1, then the conic is an ellipse. 
 From the figure 4.18 we observe 
that F2Pi is always less than PiMi. 

  i.e.,  
F2Pi
PiMi

 = e < 1, (i = 1, 2, 3…)  

 
 
 
 

 
Fig. 4. 18 

2. If e = 1, then the conic is a 
parabola. 

 From the figure 4.19 we observe 
that FPi is always equal to PiMi. 

  i.e.,  
FPi
PiMi

 = e = 1, (i = 1, 2, 3…) 

 

 
 
 
 
 
 

Fig. 4. 19 

 
3. If e > 1, then the conic is a 

hyperbola. 
 From the figure 4.20 we 
observe that F1Pi is always 
greater than PiMi. 

  i.e.,  
F1Pi
PiMi

 = e > 1, (i = 1, 2, 3…) 

 
 
 
 
 
 
 
 

Fig. 4. 20 
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4.3 Parabola : 
 The locus of a point whose distance from a fixed point is equal to its 
distance from a fixed line is called a parabola. That is a parabola is a conic 
whose eccentricity is 1. 

Note : Eventhough the syllabus does not require the derivation of 
standard equation and the tracing of parabola (4.3.1, 4.3.2) and it 
needs only the standard equation and the diagram, the equation is 
derived and the curve is traced for better understanding. 

 Now we derive and trace the standard equation of a parabola. 

4.3.1. Standard equation of a parabola : 

Given : 

 Fixed point (F) 

 Fixed line (l) 

 Eccentricity (e = 1) 

 Moving point P(x, y) 

Construction : 
 Plot the fixed point F and 

draw the fixed line ‘l’. 

 

 

 

 

 

 

Fig. 4. 21 

 Drop a perpendicular (FZ) from F to l. 

 Take FZ = 2a and treat it as x-axis. 
 Draw a perpendicular bisector to FZ and treat it as y-axis. 
 Let V(0, 0) be the origin. 
 Drop a perpendicular (PM) from P to l. 
 The known points are F(a, 0), Z(− a, 0) and hence M is (− a, y). 

 By the definition of a conic, 
FP
PM  = e = 1   ⇒  FP2 =  PM2 

 (x − a)2 + (y − 0)2 = (x + a)2 + (y − y)2 

 x2 − 2ax + a2 + y2 = x2 + 2ax + a2 which simplifies to   y2 = 4ax. 
 This is the standard equation of the parabola. 
 To trace a curve, we shall use the tools dealt in detail in chapter 6. 

4.3.2.Tracing of the parabola y2 = 4ax : 
(i) Symmetry property : 
 It is symmetrical about x-axis. 

 i.e., x-axis divides the curve into two symmetrical parts. 
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(ii) Special points : 
 The parabola passes through the origin since (0, 0) satisfies the equation  

y2 = 4ax. 
 To find the points on x-axis, put y = 0. We get x = 0 only. 
 ∴ the parabola cuts the x-axis only at the origin (0, 0). 
 To find the points on y-axis, put x = 0.  We get y = 0 only. 
 ∴ the parabola cuts the y-axis only at the origin (0, 0). 
(iii) Existence of the curve : 

 For x < 0, y2 becomes negative. i.e., y is imaginary. Therefore the curve 
does not exist for negative values of x. i.e., the curve exists only for  
non-negative values of x.  
(iv) The curve at infinity : 

 As x increases, y2 also 
increases. 

 i.e., as x → ∞, y2 → ∞ 

 i.e., as x → ∞, y → ± ∞ 

 ∴  the curve is open 
rightward. [Fig. 4.22] 

 

 
 
 
 
 

Fig. 4. 22 

4.3.3. Important definitions regarding a parabola : 
 Focus : The fixed point used to draw the parabola is called the focus (F). 
Here, the focus is F(a, 0). 
 Directrix : The fixed line used to draw a parabola is called the directrix of 
the parabola. Here, the equation of the directrix is x = − a. 
 Axis : The axis of the parabola is the axis of symmetry. The curve  

y2 = 4ax is symmetrical about x-axis and hence x-axis or y = 0 is the axis of the 

parabola y2 = 4ax. Note that the axis of the parabola passes through the focus 
and perpendicular to the directrix. 
 Vertex : The point of intersection of the parabola and its axis is called its 
vertex. Here, the vertex is V(0, 0). 
 Focal distance : The focal distance is the distance between a point on the 
parabola and its focus. 
 Focal chord : A chord which passes through the focus of the parabola is 
called the focal chord of the parabola. 
 Latus Rectum : It is a focal chord perpendicular to the axis of the 
parabola. Here, the equation of the latus rectum is x = a. 
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End points of latus rectum and length of latus rectum : 
 To find the end points, 
solve the equation of latus 

rectum x = a and y2 = 4ax. 

Using x = a in y2 = 4ax 

we get  y2 = (4a)a  = 4a2 
  ∴ y = ± 2a 

 

 

 

 

Fig. 4. 23 

 If L and L′ are the end points of latus rectum then L is (a, 2a) and L′ is  

(a, − 2a). The length of latus rectum = LL′ = 4a.  Length of semi-latus rectum  

= FL = FL′ = 2a. So far we have discussed standard equation of a parabola 
which is open rightward. But we have parabolas which are open leftward, open 
upward and open downward. 
4.3.4. Other standard parabolas : 
1. Open leftward :  
 y2 = − 4ax [a > 0] 
 If x > 0, then y becomes 
imaginary. i.e., the curve does 
not exist for x > 0 i.e., the 
curve exist for x ≤ 0. 

 
 
 
 
 

Fig. 4. 24 
2. Open upward :  

 x2 =  4ay [a > 0] 
 If y < 0, then y becomes 
imaginary. i.e., the curve does 
not exist for y < 0 i.e., the 
curve exist for y ≥ 0. 
 

 
 
 
 
 
 
 
 

Fig. 4. 25 
3. Open downward :  

 x2 =  − 4ay [a > 0] 
 If y > 0, then y becomes 
imaginary. i.e., the curve does 
not exist for y > 0 i.e., the 
curve exist for y ≤ 0. 
 

 
 
 
 
 
 

Fig. 4. 26 
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 Remark : So far we have discussed four standard types of parabolas. 
There are plenty of parabolas which cannot be classified under these 
standard types. For example, consider the following parabolas. 

 
 
 
 
 
 
 

   

Fig. 4. 27 

 For the above parabolas, the axes are neither parallel to x-axis nor parallel 
to y-axis. In such cases the equation of the parabolas include xy term, which is 
beyond the scope of this book, eventhough we will find the equation of the 
parabolas which are not in standard form. Note that for the standard types the 
axis is either parallel to x-axis or parallel to y-axis. We will study only these 
four types. 
 All the parabolas discussed so far have vertex at the origin. In general the 
vertex need not be at the origin for any parabola. Hence we need the concept of 
shifting the origin or translation of the axes. 

4.3.5 The process of shifting the origin or translation of axes : 
 Consider the xoy system. Draw a line parallel to x-axis (say X-axis) and 
draw a line parallel to y-axis (say Y-axis). Let P(x, y) be a point with respect to 
xoy system and P(X, Y) be the same point with respect to XOY system. 

 Let the co-ordinates of O′ with respect to xoy system be (h, k) 
 The co-ordinate of P with 
respect to xoy system : 
 OL = OM + ML = h + X 
 i.e., x = X + h 
 Similarly y = Y + k 

∴ The new co-ordinates of P 
with respect to XOY system 

 X = x − h 

 Y = y − k 

 
 
 
 
 
 
 

Fig. 4. 28 
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4.3.6 General form of the standard equation of a parabola, which is 
open rightward (i.e., the vertex other than origin) : 

 Consider a parabola with vertex V whose co-ordinates with respect to XOY 
system is (0, 0) and with respect to xoy system is (h, k). 

 Since it is open rightward, the equation of the parabola w.r.t. XOY system 

is Y2 = 4aX. 

 By shifting the origin X = x − h and Y = y − k,  the equation of the parabola 

with respect to old xoy system is (y − k)2 = 4a(x − h). 

 This is the general form of the standard equation of the parabola, which is 
open rightward. Similarly the other general forms are 

 (y − k)2 = − 4a (x − h) (open leftwards) 

 (x − h)2 = 4a (y − k) (open upwards) 

 (x − h)2 = − 4a (y − k) (open downwards) 

 Note : To find the general form, replace x by x − h and y by y − k if the 
vertex is (h, k) 

 Remark : The above form of equations do not have xy term. 

Example 4.1: Find the equation of the following parabola with indicated focus 
and directrix. 

 (i) (a, 0) ; x = − a a > 0 

 (ii) (− 1, − 2) ; x − 2y + 3 = 0 

 (iii) (2, − 3) ; y − 2 = 0 

Solution: (i) Let P(x, y) be any point on the parabola. If PM is drawn 
perpendicular to the directrix, 

  
FP
PM  = e = 1 

 ⇒   FP2 = PM2 

 (x − a)2 + (y − 0)2 = 






± 

x + a

12

2

  

 ⇒ (x − a)2 + y2 = (x + a)2 

 ⇒ y2 = 4ax 

 
 
 
 
 
 

Fig. 4. 29 

 This is the required equation.  
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Alternative method : 
 From the given data, the parabola is 
open rightward. 
 ∴ The equation of the parabola is of 

the form (y − k)2 = 4a (x − h) 
 We know that the vertex is the 
midpoint of Z(− a, 0) and focus F(a, 0), 
where Z is the point of intersection of the 
directrix and the x-axis. 

 

 

 

 

 

 

Fig. 4. 30 

 ∴ Vertex is 



− a + a

2 ,    
0 + 0

2   = (0, 0) = (h, k) 

 Again the distance between the vertex and the focus VF = a 

 ∴ The required equation is (y − 0)2 = 4a (x − 0)   i.e.,  y2 = 4ax 
(ii) Let P(x, y) be any point on the parabola. If PM is drawn perpendicular to 

the directrix, 

  
FP
PM  = e = 1 

 ⇒   FP2 = PM2 

  (x + 1)2 + (y + 2)2 = 






± 

x − 2y + 3

12+22

2

  

 ⇒ 4x2 + 4xy + y2 + 4x + 32y + 16 = 0 

 
 
 
 
 
 

Fig. 4. 31 

 Note :  Here the directrix is parallel to neither x-axis nor y-axis. This type 
is not standard type. Therefore we can’t do this problem as in the alternative 
method of previous problem. 

(iii) Let P(x, y) be any point on the parabola. If PM is drawn perpendicular to 
the directrix 

  
FP
PM  = e = 1 

 ⇒   FP2 = PM2 

  i.e., (x − 2)2 + (y + 3)2 = 




± 

y − 2
1

2

  

  (x − 2)2+ (y + 3)2 = (y − 2)2 

 ⇒   x2 − 4x + 10y + 9 = 0 

 
 
 
 
 
 

Fig. 4. 32 
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 Note :  Since the directrix y = 2 is parallel to x-axis, the type is standard 
and hence this problem can be solved by alternative method of 4.1(i). 
Example 4.2 :  Find the equation of the parabola if  
 (i) the vertex is (0, 0) and the focus is (− a, 0), a > 0 
 (ii) the vertex is (4, 1) and the focus is (4, − 3) 

Solution: (i) From the given data the parabola is open leftward 
The equation of the parabola is of the form 

  (y − k)2 = − 4a(x − h) 
 Here, the vertex (h, k) is (0, 0) and VF = a 
 ∴ The required equation is 

  (y − 0)2 = − 4a (x − 0) 

  y2 = − 4ax 

 
 
 
 
 
 

Fig. 4. 33 

(ii) From the given data the parabola is open downward. 
 ∴  The equation is of the form 

  (x − h)2 = − 4a (y − k) 
 Here, the vertex (h, k) is (4, 1) and 
the distance between the vertex and 
the focus 
  VF = a 

    ⇒ (4 − 4)2 + (1 + 3)2  = 4 = a 
 ∴ the required equation is 

  (x − 4)2 = − 4(4) (y − 1) 

  (x − 4)2 = − 16(y − 1) 

 
 
 
 
 
 
 
 
 

Fig. 4. 34 

Example 4.3: Find the equation of the parabola whose vertex is (1, 2) and the 
equation of the latus rectum is x = 3.  

Solution: From the given data the parabola is open rightward. 

 ∴ The equation is of the form 

  (y − k)2 = 4a(x − h) 
 Here, the vertex V (h, k) is (1, 2) 
 Draw a perpendicular from V to the latus 
rectum. 
 It passes through the focus. 

 ∴ F is (3, 2) 
 Again VF = a = 2 

 
 
 
 
 
 
 

Fig. 4. 35 
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 ∴ The required equation is 

  (y − 2)2 = 4(2) (x − 1) 

   (y − 2)2 = 8(x − 1) 
Example 4.4: Find the equation of the parabola if the curve is open rightward, 
vertex is (2, 1) and passing through point (6, 5).  
Solution: Since it is open rightward, the equation of the parabola is of the form 

   (y − k)2 = 4a(x − h) 
 The vertex V(h, k) is (2, 1) 

   ∴  (y − 1)2 = 4a (x − 2) 
 But it passes through (6, 5)    

   ∴   42 = 4a (6 − 2)    ⇒  a = 1 

 ∴ The required equation is (y − 1)2 = 4(x − 2) 
Example 4.5 : Find the equation of the parabola if the curve is open upward, 
vertex is (− 1, − 2) and the length of the latus rectum is 4.  
Solution: Since it is open upward, the equation is of the form 

   (x − h)2 = 4a(y − k) 
   Length of the latus rectum = 4a  =  4 and this gives a = 1 
 The vertex V (h, k) is (− 1, − 2) 

  Thus the required equation becomes  (x + 1)2  =  4 (y + 2) 
Example 4.6 : Find the equation of the parabola if the curve is open leftward, 
vertex is (2, 0) and the distance between the latus rectum and directrix is 2.  
Solution: Since it is open leftward, the equation is of the form 

   (y − k)2 = − 4a(x − h) 
 The vertex V(h, k) is (2, 0) 
 The distance between latus rectum and directrix = 2a  =  2  giving  a = 1 
and the equation of the parabola is  

   (y − 0)2 = − 4(1) (x − 2) 

   or   y2 = − 4(x − 2) 
Example 4.7 : Find the axis, vertex, focus, directrix, equation of the latus 
rectum, length of the latus rectum for the following parabolas and hence draw 
their graphs. 

 (i) y2 = 4x (ii) x2 = − 4y (iii) (y + 2)2 = − 8(x + 1) 

 (iv) y2 − 8x + 6y + 9 = 0   (v) x2 − 2x + 8y + 17 = 0  
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Solution:  

 (i)     y2 = 4x 

   (y − 0)2 = 4(1) (x − 0) 
 Here (h, k) is (0, 0) and a = 1 
 Axis : The axis of symmetry is  

x-axis. 
 Vertex : The vertex V (h, k) is (0, 0) 
 Focus : The focus F (a, 0) is (1, 0) 
 Directrix : The equation of the directrix is 

x = − a    i.e. x = − 1 
Latus Rectum : The equation of the latus 

rectum is x = a   i.e. x = 1 

 
 
 
 
 
 
 

 
Fig. 4. 36 

and its length is 4a = 4(1) = 4    ∴ the graph of the parabola looks as in  
Fig. 4.36. 

 (ii)     x2 = − 4y 

   (x − 0)2 = − 4(1) (y − 0) 
 Here (h, k) is (0, 0) and a = 1 
 Axis : y-axis or x = 0 
 Vertex : V (0, 0) 
 Focus : F (0, − a) i.e. F (0, − 1) 
 Directrix : y = a    i.e. y = 1 
 Latus rectum : y = − a   i.e. y = − 1 
  : length = 4 

 
 
 
 
 
 

Fig. 4. 37 
∴ the graph looks as in Fig. 4.37 

 (iii)     (y + 2)2 = − 8 (x + 1) 

   Y2 = − 8X     where X = x + 1 

   Y2 = − 4(2) X           Y = y + 2           a = 2 
 The type is open leftward. 
 Referred to X, Y Referred to x, y 

X = x + 1, Y = y + 2 
Axis Y = 0 Y = 0   ⇒  y + 2 = 0 
Vertex (0, 0) X = 0  ;  Y = 0   

⇒  x + 1 = 0  ;  y + 2 = 0 
x = − 1,   y = − 2 
∴  V (− 1, − 2) 

V (0,0)
F(1,0) 

x = -1

x

y

x = 1

V (0,0)
F(1,0) 

x = -1

x

y
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V (0,0)

y = 1

F
(0,-1) 

x

y

y = -1

V (0,0)

y = 1

F
(0,-1) 
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Focus (− a, 0)   i.e.  (− 2, 0) X = − 2   ;  Y = 0 
⇒  x + 1 = − 2, y + 2 = 0 
x = − 3, y = − 2 
F (− 3, − 2) 

Directrix X = a    i.e.   X = 2 X = 2   ⇒  x + 1 = 2 
            ⇒  x = 1 

Latus rectum X = − a    i.e.  X = − 2 X = − 2  ⇒  x + 1 = − 2 
              ⇒  x = − 3 

Length of  
Latus rectum   

4a = 8 8 

 
 
 
 
 
 
 
 

Fig. 4. 38 

 (iv)     y2 − 8x + 6y + 9 = 0 

   y2 + 6y = + 8x − 9 

   (y + 3)2 − 9 = + 8x − 9 

   (y + 3)2 = 8x 

   Y2 = 8X  where X = x 

   Y2 = 4(2)X  Y = y + 3 
   a = 2 
 The type is open rightward 

 
Referred to X, Y 

Referred to x, y 
X = x , Y = y + 3 

Axis Y = 0 Y = 0   ⇒  y + 3 = 0 

Vertex (0, 0) X = 0  ;  Y = 0   

⇒  x = 0  ;  y + 3 = 0 

∴  V (0, − 3) 

X

Y

x

y

F
(-3,-2 )

V (-1,-2)

(0,0)
x = 1

X

Y

x

y

F
(-3,-2 )

V (-1,-2)

(0,0)
x = 1
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Focus (a, 0)   i.e.  (2, 0) X = + 2   ;  Y = 0 
⇒  x = 2, y + 3 = 0 
F (2, − 3) 

Directrix X = − a    i.e.   X = − 2 X = − 2   ⇒  x = − 2 
Latus rectum X = a    i.e.  X = 2 X = 2  ⇒  x = 2 
Length  4a = 8 8 

 
 

 
 
 
 
 
 
 

Fig. 4. 39 

 (v)     x2 − 2x + 8y + 17 = 0 

   x2 − 2x = − 8y − 17 

   (x − 1)2 − 1 = − 8y − 17 

   (x − 1)2 = − 8y − 16 

   (x − 1)2 = − 8(y + 2) 

   X2 = − 8Y where X = x − 1 

   X2 = − 4(2)Y  Y = y + 2 
   a = 2 
 The type is open downward 

 
 

 
 
 
 
 
 

Fig. 4. 40 
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Referred to X, Y 

Referred to x, y 

X = x − 1 , Y = y + 2 

Axis X = 0 X = 0   ⇒  x − 1 = 0 

            ⇒  x = 1 

Vertex (0, 0) X = 0  ;  Y = 0   

⇒  x −1 = 0,  y + 2 = 0 

∴  V (1, − 2) 

Focus (0, − a)   i.e.  (0, − 2) X = 0   ;  Y = − 2 

⇒  x − 1 = 0, y + 2 = − 2 

F (1, − 4) 

Directrix Y = a    i.e.   Y = 2 Y = 2   ⇒  y + 2 = 2 

            ⇒  y = 0 

Latus rectum Y = − a    i.e.  Y = − 2 Y = − 2  ⇒  y + 2 =  − 2 

y = − 4 

Length 4a = 8 8 

4.3.7 Some practical problems : 

Example 4.8 : 

 The girder of a railway bridge is in the parabolic form with span  
100 ft. and the highest point on the arch is 10 ft. above the bridge. Find the 
height of the bridge at 10 ft. to the left or right from the midpoint of the bridge. 

Solution:  

 

 

 

 

Fig. 4. 41 
 Consider the parabolic girder as open downwards 

  i.e., x2 = − 4ay 

  It passes through (50, − 10) 

   ∴   50 × 50 = − 4a (− 10) 
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   ⇒    a = 
250

4   

   ∴    x2 = − 4



250

4  y 

   x2  = − 250y 

 Let B(10, y1) be a point on the parabola. 

   ∴  100 = − 250y1 

   y1 = − 
100
250   =  − 

2
5  

 Let AB be the height of the bridge at 10 ft to the right from the mid point 

 AC = 10 and BC = 
2
5  

 AB = 10 − 
2
5   =  9 

3
5  ft 

 i.e. the height of the bridge at the required place = 9 
3
5  ft. 

Example 4.9 : 
 The headlight of a motor vehicle is a parabolic reflector of diameter 12cm 
and depth 4cm. Find the position of bulb on the axis of the reflector for 
effective functioning of the headlight. 

Solution:  

 By the property of parabolic 
reflector the position of the bulb 
should be placed at the focus. 
 By taking the vertex at the 
origin, the equation of the 

reflector is y2 = 4ax 
 Let PQ be the diameter of the 
reflector 

 
  
 
 
 
 
 
 
 
 

Fig. 4. 42 
 ∴  P is (4, 6) and since P(4, 6) lies on the parabola, 36 = 4a × 4  ⇒  a = 2.25 
 The focus  is at a distance of 2.25cm from the vertex on the x-axis. 
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 ∴ The bulb has to be placed at a distance of 2.25 cms from the centre of 
the mirror. 

Example 4.10 : 
 On lighting a rocket cracker it gets projected in a parabolic path and 
reaches a maximum height of 4mts when it is 6 mts away from the point of 
projection. Finally it reaches the ground 12 mts away from the starting point. 
Find the angle of projection. 

Solution:  
 

 

 

 
 

 

Fig. 4. 43 

 
 
 
 
 

 

Fig. 4. 44 

 The equation of the parabola is of the form x2 = − 4ay (by taking the vertex at 
the origin). It passes through (6, − 4) 

   ∴  36 = 16a    ⇒   a  =  
9
4  

 The equation is  x2 = − 9y   …(1) 

 Find the slope at (− 6, − 4) 

 Differentiating (1) with respect to x, we get 

   2x = − 9 
dy
dx    ⇒   

dy
dx   =  −  

2
9   x 

   At (− 6, − 4), 
dy
dx  =  − 

2
9  × − 6 = 

4
3    i.e.  tan θ = 

4
3  

   θ = tan−1  



4

3   

 ∴ The angle of projection is tan−1 



4

3   

Example 4.11 : 
 A reflecting telescope has a parabolic mirror for which the distance from 
the vertex to the focus is 9mts. If the distance across (diameter) the top of the 
mirror is 160cm, how deep is the mirror at the middle? 

 

4
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4

12
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4

V (0,0) 

(6, - 4)

6 mts 6 mts
(- 6, - 4)

4

V (0,0) 
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Solution:  
 Let the vertex be at the origin. 
  VF = a  =  900 
 The equation of the parabola is 

  y2 = 4 × 900 × x 
 Let x1 be the depth of the mirror at the 

middle 
 Since (x1, 80) lies on the parabola 

 802 = 4 × 900 × x1 ⇒ x1 =  
16
9   

 ∴ depth of the mirror = 
16
9   cm 

 
 
 
 
 

 

 

Fig. 4. 45 

Example 4.12 : 

 Assume that water issuing from the end of a horizontal pipe, 7.5m above 
the ground, describes a parabolic path. The vertex of the parabolic path is at the 
end of the pipe. At a position 2.5m below the line of the pipe, the flow of water 
has curved outward 3m beyond the vertical line through the end of the pipe. 
How far beyond this vertical line will the water strike the ground? 

Solution:  

3 mts
2.5 mts

?
Ground

Pipe line

7.5 mts

Fig. 4. 46 
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Fig. 4. 47 

 As per the given information, we can take the parabola as open downwards 

i.e. x2 = − 4ay 
 Let P be the point on the flow path, 2.5m below the line of the pipe and 3m 
beyond the vertical line through the end of the pipe. 

 ∴ P is (3, − 2.5) 

   Thus     9 = − 4a (− 2.5) 

   ⇒  a = 
9

10  
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 ∴  The equation of the parabola is  x2 = − 4 × 
9
10  y 

 Let x1 be the distance between the bottom of the vertical line on the ground 

from the pipe end and the point on which the water touches the ground. But the 
height of the pipe from the ground is 7.5 m 

 The point (x1, − 7.5) lies on the parabola 

   x1
2 = − 4 × 

9
10  × (− 7.5) = 27 

   x1 = 3 3  

 ∴ The water strikes the ground 3 3 m beyond the vertical line. 

Example 4.13 : 
 A comet is moving in a parabolic orbit around the sun which is at the focus 
of a parabola. When the comet is 80 million kms from the sun, the line segment 

from the sun to the comet makes an angle of 
π
3 radians with the axis of the orbit. 

find (i) the equation of the comet’s orbit (ii) how close does the comet come 
nearer to the sun? (Take the orbit as open rightward). 

Solution:  
 Take the parabolic orbit as open 
rightward and the vertex at the origin. 
 Let P be the position of the comet in 
which FP = 80 million kms. 
 Draw a perpendicular PQ from P to the 
axis of the parabola. 
 Let FQ = x1 

 From the triangle FQP, 

  PQ = FP . sin 
π
3 

   = 80 × 
3

2   =  40 3 

 
 

 

 

 
 
 

 

Fig. 4. 48 

  Thus  FQ = x1 = FP . cos 
π
3  = 80 × 

1
2 = 40 

  ∴ VQ = a + 40 if VF = a ;   P is (VQ, PQ)  =  ( )a + 40, 40 3  

 Since P lies on the parabola y2 = 4ax 
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  ( )40 3
2
 = 4a(a + 40) 

  ⇒  a = − 60  or  20 

  a = − 60 is not acceptable. 

 ∴ The equation of the orbit is 

  y2 = 4 × 20 × x 

  y2 = 80x 
 The shortest distance between the Sun and the Comet is VF i.e. a 

 ∴ The shortest distance is 20 million kms. 
Example 4.14 : 
 A cable of a suspension bridge hangs in the form of a parabola when the 
load is uniformly distributed horizontally. The distance between two towers is 
1500 ft, the points of support of the cable on the towers are 200ft above the road 
way and the lowest point on the cable  is 70ft above the roadway. Find the 
vertical distance to the cable (parallel to the roadway) from a pole whose height 
is 122 ft. 

Solution : 

 

 

 

 

 

 

Fig. 4. 49 

 Take the lowest point on the cable as the vertex and take it as origin. Let 
AB and CD be the towers. Since the distance between the two towers is 1500 ft. 

   VA′ = 750 ft  ;  AB = 200 ft 

  ∴A′B = 200 − 70 = 130 ft 
 Thus the point B is (750, 130) 

 The equation of the parabola is x2 = 4ay 

 Since B is a point on x2 = 4ay 

   (750)2 = 4a(130) 

   ⇒  4a = 
75 × 750

13  
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 ∴ The equation is x2 = 
75 × 750

13  y 

 Let PQ be the vertical distance to the cable from the pole RQ. 

 RQ = 122,   RR′ = 70    ⇒    R′Q = 52 

 Let VR′ be x1 ∴ Q is (x1, 52) 

 Q is a point on parabola 

   x1
2 = 

75 × 750
13  × 52 

   x1 = 150 10 

   PQ = 2x1 = 300 10 ft. 

EXERCISE 4.1 
 (1) Find the equation of the parabola if  

  (i) Focus : (2, − 3) ; directrix : 2y − 3 = 0 

  (ii) Focus : (− 1, 3) ; directrix : 2x + 3y = 3 

  (iii) Vertex : (0, 0) ; focus : (0, − 4) 

  (iv) Vertex : (1, 4) ; focus : (− 2, 4) 
  (v) Vertex : (1, 2) ; latus rectum : y = 5 
  (vi) Vertex : (1, 4) ; open leftward and passing through the point  

(− 2, 10) 

  (vii) Vertex : (3, − 2) ; open downward and the length of the latus 
rectum is 8. 

  (viii) Vertex : (3, − 1) ; open rightward ; the distance between the 
latus rectum and the directrix is 4. 

  (ix) Vertex : (2, 3) ; open upward ; and passing through the point 
(6, 4). 

 (2) Find the axis, vertex, focus, equation of directrix, latus rectum, length of 
the latus rectum for the following parabolas and hence sketch their 
graphs. 

  (i) y2 = − 8x  (ii) x2 = 20y 

  (iii) (x − 4)2 = 4(y + 2) (iv) y2 + 8x − 6y + 1 = 0 

  (v) x2 − 6x − 12y − 3 = 0 

 (3) If a parabolic reflector is 20cm in diameter and 5cm deep, find the 
distance of the focus from the centre of the reflector. 
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 (4) The focus of a parabolic mirror is at a distance of 8cm from its centre 
(vertex). If the mirror is 25cm deep, find the diameter of the mirror. 

 (5) A cable of a suspension bridge is in the form of a parabola whose span is 
40 mts. The road way is 5 mts below the lowest point of the cable. If an 
extra support is provided across the cable 30 mts above the ground level, 
find the length of the support if the height of the pillars are 55 mts. 

4.4 Ellipse : 

Definition : The locus of a point in a plane whose distance from a fixed point bears 
a constant ratio, less than one to its distance from a fixed line is called  ellipse. 

Note : Eventhough the syllabus does not require the derivation of 
standard equation and the tracing of ellipse (4.4.1, 4.4.2) and it 
needs only the standard equation and the diagram, the equation is 
derived and the curve is traced for better understanding. 

 Now, we will derive the standard equation of an ellipse. 

4.4.1 Standard equation of the ellipse : 
Given : 

  Fixed point F 

  Fixed line l 

  Eccentricity e (e < 1) 

  Moving point P (x, y) 

Construction : 

  Plot the fixed point F 
and draw the fixed 
line l 

 
 
 
 
 
 
 
 

Fig. 4. 50 

  Drop a perpendicular (FZ) from F to l 
  Drop a perpendicular (PM) 

  Plot the points A, A′ which divides FZ internally and externally in the ratio e : 1 

  Take AA′ = 2a and treat it as x-axis.  

  Draw a perpendicular bisector to AA′ and treat it as y-axis. 
  Let C be the origin. 

  The known points are the origin C(0, 0), A(a, 0), A′(− a, 0) 
  To find the co-ordinates of F and M, do the following : 

 Since A, A′ divides FZ internally and externally in the ratio e : 1 respectively, 

F(ae,0)

P(x,y) M

Z
(a/e, 0)

AA′ (-a,0)

(a,0)
x

y

C

x = a / e

F(ae,0)

P(x,y) M

Z
(a/e, 0)

AA′ (-a,0)

(a,0)
x

y

C

x = a / e
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FA
AZ  = 

e
1  

 ∴ FA = e AZ 

 i.e., CA − CF = e (CZ − CA) 

 ∴ a − CF = e (CZ − a) …(1) 

 
FA′

A′Z
  = 

e
1  

 ∴ FA′ = e A′Z 

 i.e. A′C + CF = e (A′C + CZ) 

 ∴ a + CF = e(a + CZ) … (2) 

   (2) + (1)    ⇒    2a = e [2CZ]    ⇒  CZ = 
a
e  

   (2) − (1)    ⇒    2CF = e(2a)      ⇒    CF = ae 

 ∴ M is 



a

e,  y   and F is (ae, 0) 

To obtain the equation of the ellipse, do the following : 

 Since P is any point on the ellipse 

   
FP
PM = e  ⇒  FP2 = e2PM2 

   i.e.  (x − ae)2 + (y − 0)2 = e2










x − 

a
e

2

 + (y − y)2  

   ⇒   x2 − e2x2 + y2 = a2 − a2e2 

   (1 − e2) x2 + y2 = a2 (1 − e2) 

 Dividing by a2 (1 − e2), we get 

   
x2

a2  +  
y2

a2(1 − e2)
 = 1 

  i.e. 
x2

a2 + 
y2

b2 = 1,  where b2 = a2 (1 − e2) 

 This is known as the standard equation of an ellipse. 

4.4.2  Tracing of the ellipse 
x2

a2  + 
y2

b2  = 1, a > b  

(i) Symmetry property : 
 It is symmetrical about x-axis and y-axis simultaneously and hence about 
the origin. 
(ii) Special points : 
 It does not pass through the origin. 
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 To find the points on x-axis, put y = 0, we get x = ± a. Therefore the curve 

meets the x-axis at A(a, 0) and A′(− a, 0). 
 To find the points on y-axis, put x = 0, we get y = ± b. Therefore the curve 

meets the y-axis at B(0, b) and B′(0, − b) 
(iii) Existence of the curve : 

 Write the equation of the ellipse as y = ± 
b
a   a2 − x2 .  y is real only if  

a2 − x2  ≥ 0. i.e., the curve does not exist for a2 − x2 < 0  or  x2 − a2 > 0 
 Equivalently the curve does not exist for x > a and x < − a. Thus the curve 
exists only when − a ≤ x ≤ a. 

 Write the equation of the ellipse as x = ± 
a
b   b2 − y2 .  x is real only if  

b2 − y2 ≥ 0.  The curve does not exist for b2 − y2 < 0   i.e.,  y2 − b2 > 0   i.e., the 
curve does not exist for y > b and y < − b. The curve exist only when  
− b ≤ y ≤ b.  ∴ Ellipse is a closed curve bounded by the lines x = ± a and  
y = ± b. Thus the curve is  

 
 
 
 
 
 
 
 

Fig. 4. 51 

4.4.3 Important definitions regarding ellipse : 
 Focus : The fixed point is called focus, denoted as F1 (ae, 0). 

 Directrix : The fixed line is called directrix l of the ellipse and its equation 

is x = 
a
e  . 

 Major axis : The line segment AA′ is called the major axis and the length 
of the major axis is 2a. The equation of the major axis is y = 0. 
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 Minor axis : The line segment BB′ is called the minor axis and the length 
of minor axis is 2b. Equation of the minor axis is x = 0. Note that the length of 
major axis is always greater than minor axis. 
 Centre : The point of intersection of the major axis and minor axis of the 
ellipse is called the centre of the ellipse. Here C(0, 0) is the centre of the ellipse. 
Note that the centre need not be the origin of the ellipse always. 

End points of latus rectum and length of latus rectum : 

 To find the end points, solve x = ae … (1)     and   
x2

a2  + 
y2

b2  = 1 … (2) 

 Using (2) in (1) we get 

   
a2 e2

a2    +  
y2

b2  = 1 

   ∴  
y2

b2  = 1 − e2 

   ∴  y2 = b2 (1 − e2) 

    = b2  






b2

a2     



  ‡ b2 = a2 (1 − e2)

 or 
b2

a2 = 1 − e2  

   ∴  y = ± 
b2

a   

 If L1 and L1
′ are the end points of the latus rectum then L1 is 





ae,  
b2

a   and 

L1
′ is 





ae,  − 
b2

a   . 

 The end points of the other latus rectum are 





− ae,  ±  
b2

a   . 

 The length of the latus rectum is 
2b2

a   . 

 For the above discussed ellipse, the major axis is along x-axis. There is 
another standard ellipse in which the major axis is along the y-axis. 

 Vertices : The points of intersection of the ellipse and its major axis are 

called its vertices. Here the vertices of the ellipse are A(a, 0) and A′(− a, 0). 
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 Focal distance : The focal distance with respect to any point P on the 
ellipse is the distance of P from the referred focus. 
 Focal chord : A chord which passes through the focus of the ellipse is 
called the focal chord of the ellipse. 
A special property : Thanks to the symmetry about the origin, it permits 

 (i)  the second focus F2 (− ae, 0) 

 (ii) the second directrix x = − 
a
e  

 Latus rectum : It is a focal chord perpendicular to the major axis of the 
ellipse. The equations of latus rectum are x = ae, x = − ae. 
Eccentricity   

 e = 1 − 
b2

a2     

Remark : 

 In the case of an ellipse 0 < e < 1.  As e → 0, 
b
a → 1   i.e., b → a  or the 

length of the minor and major axes are close in size.  i.e., the ellipse is close to 
being a circle. 

 As e → 1,  
b
a → 0 and the ellipse degenerates into a line segment 

(degenerate conic) i.e., the ellipse is flat. 

4.4.4 The other standard form of the ellipse : 
 If the major axis of the ellipse is along the y-axis, then the equation of the 

ellipse takes the form 
x2

b2  + 
y2

a2  = 1, for a > b. 

 For this type of ellipse, we have the following as explained in the earlier 
ellipse. 
 Centre : C (0, 0) 

 Vertices : A (0, a),  A′ (0, − a) 

 Foci : F1 (0, ae), F2 (0, − ae) 

 Equation of major axis  is x = 0 
 Equation of minor axis is y = 0 

 End points of minor axis : B (b, 0),  B′(− b, 0) 
 Equation of directrices : y = ± a/e 
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 End points of latus rectums : 





± 
b2

a ,  ae   ,  





± 
b2

a ,  − ae   

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. 52 

4.4.5 General forms of standard ellipses : 

 To obtain the general forms of standard ellipses, replace x by x − h and y 
by (y − k) if the centre is C(h, k). 

 Thus the general forms of standard ellipses are 
(x − h)2

a2   + 
(y − k)2

b2   = 1, 

(x − h)2

b2   + 
(y − k)2

a2   = 1,  a > b 

Focal property of an ellipse : 
 The sum of the focal distances of any point on an ellipse is constant and is 
equal to the length of the major axis. 

 
 
 
 
 
 
 
 

Fig. 4. 53 
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A′(0,-a)

x

(-b2/a ,ae) L1
1

(-b2/a -,ae)L2
1

y = a/e

y = - a/e

x

y

B1 BC

L1 (-b2/a,ae)

L2 (b2/a,-ae)

A(0,a)

A′(0,-a)

x

F 1

P

C
x

y

MM′

x = - a/e x = a/e

Z′ ZF 2 F 1

P

C
x

y

MM′

x = - a/e x = a/e

Z′ ZF 2
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Proof : 
 To prove : F1P + F2P = 2a 

 Let P be a point on the ellipse. Drop the perpendiculars PM and PM′ to the 

directrices x = 
a
e   and x = − 

a
e  respectively . 

 We know that 
F1P
PM    =  e,   

F2P

PM ′
  = e 

   ∴ F1P = ePM,   F2P = e PM′ 

   ∴  F1P + F2P = e(PM + PM′) 

    = e(MM′) 

    = e . 
2a
e   

    = 2a 
    = length of the major axis 
Example 4.15 : Find the equation of the ellipse whose foci are (1, 0) and  

(− 1, 0) and eccentricity is 
1
2  . 

Solution:  

 The centre of the ellipse is the midpoint of FF′ where F is (1, 0) and F′ is 
(− 1, 0). 

 ∴ Centre C is 



1 − 1

2   ,  
0 + 0

2   = (0, 0) 

  But   F1F2 = 2ae  =  2 and e = 
1
2 

  2a × 
1
2  = 2 

 
 
 
 
 
 

Fig. 4. 54 
  a = 2 

  b2 = a2 (1 − e2)  =  4 



1 − 

1
4   =  3 

 From the given data the major axis is along x-axis. 
 ∴ the equation of the ellipse is of the form 

   
(x − h)2

a2    +  
(y − k)2

b2   = 1    ⇒    
x2

4    +  
y2

3   = 1 

C

y

(-1,0) F2 F1 (1,0) 
xC

y

(-1,0) F2 F1 (1,0) 
x
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Example 4.16 : Find the equation of the ellipse whose one of the foci is (2, 0) 

and the corresponding directrix is x = 8 and eccentricity is 
1
2 

Solution:  
 Let P(x, y) be a moving point. By definition 

 
FP
PM  = e 

 ∴   FP2 = e2 PM2 

 (x − 2)2 + (y − 0)2 = 
1
4   





± 

x − 8
1

2

 

 (x − 2)2 + y2 = 
1
4   (x − 8)2 

 

 

 

 

 

 

Fig. 4. 55 

 4 [(x − 2)2 + y2] = (x − 8)2 

 3x2 + 4y2 = 48 

 
x2

16  + 
y2

12  = 1 

Aliter : 
 From the given data, the major 
axis is along the x-axis and the 
equation of the ellipse may be 
taken as  

  
x2

a2 + 
y2

b2 = 1 

  FZ = 
a
e   −  ae = 6 

  But e = 
1
2   ⇒  2a − 

1
2  a = 6 

 
 
 
 
 
 
 

Fig. 4. 56 

 ⇒  
3
2 a = 6  ⇒  a = 4 

   b2 = a2 (1 − e2) = 16 



1 − 

1
4    =  16 × 

3
4   =  12 

 ∴ The required equation is  
x2

16  + 
y2

12  = 1 

M (8,y)  

F(2,0)

P(x,y)

x

y
x = 8  

M (8,y)  

F(2,0)

P(x,y)

x

y
x = 8  

F(2,0) Z(8,0)

x = 8

C
x

y

F(2,0) Z(8,0)

x = 8

C
x

y
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Example 4.17 : Find the equation of the ellipse with focus (− 1, − 3), directrix  

x − 2y = 0 and eccentricity 
4
5  

Solution:  
 Let P(x, y) be a moving point. By definition 

  
FP
PM  = e 

  ∴   FP2 = e2 PM2 

  (x + 1)2 + (y + 3)2 = 
16
25   





± 

x − 2y
1 + 4

 

2

 

 125 [(x + 1)2 + (y + 3)2 ] = 16 (x − 2y)2 

  
 
 
 
 
 

Fig. 4. 57 

  ⇒ 109x2 + 64xy + 61y2 + 250x + 750y + 1250 = 0 

Example 4.18 :  Find the equation of the ellipse with foci (± 4, 0) and vertices 
(± 5, 0) 
Solution:  
 Let the foci be F1(4, 0) and  

F2 (− 4, 0), vertices be A(5, 0) 

and A′(− 5, 0). The centre is 

the  midpoint of AA′ 

 i.e., C is  



− 5 + 5

2  ,  
0 + 0

2     

               = (0, 0) 

  
 
 
 
 
 

 
Fig. 4. 58 

 From the given data, the major axis is along the x-axis and the equation of 
the ellipse is of the form 

   
x2

a2  + 
y2

b2 = 1 

   Here CA = a  =  5    

   CF = ae = 4   since  e  =  
4
5  

   b2 = a2 (1 − e2)  =  25 − 16 = 9 and the 

required equation of the ellipse is   
x2

25  + 
y2

9    =  1 

F(-1,-3)

P(x,y)

x 
-
2y

= 
0

F(-1,-3)

P(x,y)

x 
-
2y

= 
0

A
(5,0)

y

xA′
(-5,0)

F2

(-4,0)

C (0,0) F1 

(4,0) 

A
(5,0)

y

xA′
(-5,0)

F2

(-4,0)

C (0,0) F1 

(4,0) 
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Example 4.19 : The centre of the ellipse is (2, 3). One of the foci is (3, 3). Find 
the other focus. 
Solution:  

 From the given data the major axis is 
parallel to the x axis. Let F1 be (3, 3) 

 Let F2 be the point (x, y). Since  
C (2, 3) is the midpoint of F1 and F2 on 

the major axis y = 3 

  
x + 3

2   = 2 and  
y + 3

2   = 3 

F2 F1C y = 3

Fig. 4. 59 

 This gives x = 1 and y = 3. Thus the other focus is (1, 3). 

Example 4.20 : Find the equation of the ellipse whose centre is (1, 2), one of 

the foci is  (1, 3) and eccentricity is 
1
2  

Solution:  

 The major axis is parallel to y-axis. 

 ∴ The equation is of the form 

 
(x − h)2

b2  + 
(y − k)2

a2  = 1 

 CF1 = ae = 1 

 But e = 
1
2  ⇒  a = 2,  a2 = 4 

 
 
 
 
 
 

Fig. 4. 60 

  b2 = a2(1 − e2) = 4



1 − 

1
4  = 3 ;   C(h, k) = (1, 2) 

 ∴ The required equation is  
(x − 1)2

3  + 
(y − 2)2

4  = 1 

Example 4.21 : Find the equation of the ellipse whose major axis is along  

x-axis, centre at the origin, passes through the point (2, 1) and eccentricity  
1
2 

Solution:  

 Since the major axis is along the x-axis and the centre is at the origin, the 

equation of the ellipse is of the form  
x2

a2  + 
y2

b2 = 1  

C(1,2)

F1(1,3)
x = 1

x

y

C(1,2)

F1(1,3)
x = 1

x

y
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 It passes through the point (2, 1).   ∴ 
4
a2 + 

1
b2  =  1                 … (1) 

  e = 
1
2  

 b2 =  a2 (1 − e2)   ⇒   b2 = a2 



1 − 

1
4   

 ∴  4b2 = 3a2                … (2) 

Solving (1) and (2) we get  a2 = 
16
3  ,  b2 = 4 

∴ The required equation is  
x2

16/3  + 
y2

4   = 1 

Example 4.22 : Find the equation of the ellipse if the major axis is parallel to  
y-axis, semi-major axis is 12, length of the latus rectum is 6 and the centre is (1, 
12) 
Solution:  
 Since the major axis is parallel to y-axis the equation of the ellipse is of the 
form 

   
(x − h)2

b2   + 
(y − k)2

a2  = 1 

 The centre C (h, k) is (1, 12) 

 Semi major axis  a = 12 ⇒ a2 = 144 

 Length of the latus rectum 
2b2

a  = 6 ⇒ 
2b2

12  = 6   

 ∴  b2 = 36 and the required equation is  
(x − 1)2

36   + 
(y − 12)2

144   = 1 

Example 4.23 : Find the equation of the ellipse given that the centre is (4, − 1), 
focus is (1, − 1) and passing through (8, 0). 
Solution : 
 From the given data since the 
major axis is parallel to the x axis, 
the equation is of the form 

 
(x − h)2

a2   + 
(y − k)2

b2  = 1 

 The centre C(h, k) is (4, − 1) 

 
(x − 4)2

a2   + 
(y + 1)2

b2   = 1 

 
 
 
 
 
 

Fig. 4. 61 

F2(1,-1)
y = -1

y

x
C(4,-1)

F2(1,-1)
y = -1

y

x
C(4,-1)
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 It passes through (8, 0)  ∴ 
16

a2 + 
1

b2 = 1       … (1) 

   But    CF1 = ae = 3 

   b2 = a2 (1 − e2) = a2 − a2 e2 = a2 − 9 

 (1)   ⇒   
16

a2 + 
1

a2 − 9
  = 1 

  ⇒ 16a2 − 144 + a2 = a4 − 9a2 

  ⇒   a4 − 26a2 + 144 = 0 

  ⇒ a2 = 18 or 8 

 Case (i) : a2 = 18 

   b2 = a2 − 9   =   18 − 9  =  9 

 Case (ii) : a2 = 8 

   b2 = 8 − 9  =  − 1  which is not possible 

  ∴ a2 = 18,    b2 = 9 

 Thus the equation is 
(x − 4)2

18   + 
(y + 1)2

9   = 1 

Example 4.24 :  Find the equation of the ellipse whose foci are (2, 1), (− 2, 1) 
and length of the latus rectum is 6. 

Solution : 
 From the given data the major axis is 
parallel to the x axis. 

 ∴ The equation is of the form 

 
(x − h)2

a2   + 
(y − k)2

b2  = 1 

 Since the centre is the midpoint of 
F1F2 

C is 



− 2 + 2

2   ,  
1 + 1

2   =  (0, 1) 

 
 
 
 
 
 

Fig. 4. 62 

and the  equation becomes 

   
x2

a2 + 
(y − 1)2

b2  = 1 

F2(-2,1)
y = 1

x

y

F1(2,1)F2(-2,1)
y = 1

x

y

F1(2,1)
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   F1 F2 = 2ae  =  4   ⇒   a2 e2 = 4 

   a2 e2 = a2 − b2 

   ∴  a2 − b2 = 4 … (1) 

 The length of the latus rectum  
2b2

a   = 6      b2 = 3a … (2) 

 (1) ⇒ a2 − 3a − 4 = 0 (by (2)) 

  ⇒ a = 4   or   − 1 

   a = − 1 is absurd 

   ∴a = 4 

   b2 = 3a  =  12 

 Thus the equation is 
x2

16  + 
(y − 1)2

12   = 1 

Example 4.25 : Find the equation of the ellipse whose vertices are (− 1, 4) and 

(− 7, 4) and eccentricity is  
1
3  . 

Solution : 
 From the given data the major axis is 
parallel to x axis. 

 ∴ The equation is of the form 

 
(x − h)2

a2   + 
(y − k)2

b2  = 1 

 The centre is the midpoint of AA′ 

 ∴ C is 



− 1 − 7

2   ,  
4 + 4

2   = (− 4, 4) 

 
 
 
 
 
 
 

Fig. 4. 63 

 Thus the equation becomes 

   
(x + 4)2

a2   +  
(y − 4)2

b2  = 1 

   We know that    AA′ = 2a = 6    ⇒  a = 3 

   b2 = a2 (1 − e2) = 9 



1 − 

1
9   =  8 

 The required equation is 
(x + 4)2

9   +  
(y − 4)2

8  = 1 

A′

(-7,4)

x

y

y = 4
A   

(-1,4)

y

A′

(-7,4)

x

y

y = 4
A   

(-1,4)

y
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Example 4.26 : Find the equation of the ellipse whose foci are (1, 3) and (1, 9) 

and eccentricity is 
1
2  

Solution : 
 From the given data the major axis is 
parallel to y axis. 
 ∴ The equation is of the form 

 
(x − h)2

b2   + 
(y − k)2

a2  = 1 

 The centre of the ellipse is the 
midpoint of F1 F2 

 ∴ C is 



1 + 1

2   ,  
3 + 9

2  = (1, 6) 

 
  
 
 
 
 
 

Fig. 4. 64 

   F1 F2 = 2ae  =  6 

   ae = 3 

        But   e = 
1
2      ∴   a = 6 

   b2 = a2 (1 − e2)  =  36 



1 − 

1
4  = 27 

 Thus the required equation is  

   
(x − 1)2

27   +  
(y − 6)2

36  = 1 

Property  (without proof) : 

 A point moves such that the sum of its distances from two fixed points in a 
plane is a constant. The locus of this point is an ellipse. 

Example 4.27 :  Find the equation of a point which moves so that the sum of its 
distances from (− 4, 0) and (4, 0) is 10. 

 
 
 
 
 
 

Fig. 4. 65 

F1(1,3)

F2(1,9)

x = 1

x

y

F1(1,3)

F2(1,9)

x = 1

x

y

P(x,y)

F2(-4,0)
x

y

F1(4,0)

P(x,y)

F2(-4,0)
x

y

F1(4,0)
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Solution : 
 Let F1 and F2 be the fixed points (4, 0) and (− 4, 0) respectively and  
P(x1, y1) be the moving point. 

 It is given that  F1P + F2P = 10 

 i.e., (x1 − 4)2 + (y1 − 0)2 + (x1 + 4)2 + (y1 − 0)2  = 10 

 Simplifying we get 

   9x1
2 + 25y1

2 = 225.  ∴ The locus of (x1, y1) is 

   
x2

25  +  
y2

9   = 1 

Example 4. 28 : Find the equations and lengths of major and minor axes of 

 (i)  
x2

9   + 
y2

4   = 1 (ii)   4x2 + 3y2 = 12 (iii)  
(x − 1)2

9   + 
(y + 1)2

16   = 1 

Solution : 

(i) The major axis is along x-axis and the minor axis is along y-axis. This 
gives the equation of major axis as y = 0 and the equation of minor axis as 

x = 0.  We have  a2 = 9  ;  b2 = 4    ⇒  a = 3,  b = 2  

 ∴ The length of major axis is 2a = 6 and the length of minor axis is 2b = 4 

(ii)  
x2

3  + 
y2

4   = 1 

 The major axis is along y-axis and the minor axis is along x-axis. 

 ∴ The equation of major axis is x = 0 and the equation of minor axis is  

y = 0. Here a2 = 4   ;   b2 = 3   ⇒  a = 2,   b = 3  

 ∴ The length of major axis  (2a) = 4 

      The length of minor axis (2b) = 2 3  

(iii) Let x − 1 = X and y + 1 = Y 

 ∴ The given equation becomes 
X2

9  + 
Y2

16  = 1 Clearly the major axis is along 

Y-axis and the minor axis is along X-axis. 

 ∴ The equation of major axis is X = 0 and the equation of minor axis is  
Y = 0 

 i.e., the equation of major axis is x − 1 = 0 and the equation of minor axis 
is y + 1 = 0 
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 Here a2 = 16,    b2 = 9 

 ⇒  a = 4,   b = 3 

 ∴ Length of major axis (2a) = 8 

 ∴ Length of minor axis (2b) = 6 
Example 4. 29 : Find the equations of axes and length of axes of the ellipse  

6x2 + 9y2 + 12x − 36y − 12 = 0 
Solution : 

   6x2 + 9y2 + 12x − 36y − 12 = 0 

   (6x2 + 12x) + (9y2 − 36y) = 12 

   6(x2 + 2x) + 9(y2 − 4y) = 12 

   6{(x + 1)2 − 1} + 9  {(y − 2)2 − 4} = 12 

   6(x + 1)2 + 9 (y − 2)2 = 12 + 6 + 36 

   6(x + 1)2 + 9(y − 2)2 = 54 

   
(x + 1)2

9    +  
(y − 2)2

6   = 1 

 Let X  =  x + 1 ;    Y = y − 2 

 ∴ The equation becomes   
X2

9   + 
Y2

6   = 1 

 Clearly the major axis is along X-axis and the minor axis is along Y-axis. 
 ∴ The equation of the major axis is Y = 0 and the equation of the minor 
axis is X = 0. 
 The equation of the major axis is y − 2 = 0 and of minor axis is x + 1 = 0 
 i.e., the equation of the major axis is y − 2 = 0 

 Here a2 = 9,   b2 = 6    ⇒  a = 3,    b = 6  
 ∴ The length of major axis (2a) = 6 
     The length of minor axis (2b) = 2 6  
Example 4.30 :  Find the equations of directrices, latus rectum and length of 
latus rectums of the following ellipses. 

   (i)  
x2

16  + 
y2

9   = 1    (ii) 25x2 + 9y2 = 225     (iii)  4x2 + 3y2 + 8x + 12y + 4 = 0 

Solution : 

(i) The major axis is along x-axis 

 Here a2 = 16, b2 = 9 



 209

   e = 1 − 
b2

a2  =  1 − 
9
16  = 

7
4   

 Equations of directrices are x = ± 
a
e  

                    x = 
± 16

7
 

 Equations of the latus rectums are x = ± ae 

   x = ± 7 

 Length of the latus rectum  
2b2

a   = 
2 × 9

4   =  
9
2  

(ii) 25x2 + 9y2 = 225 ∴  
x2

9   + 
y2

25  = 1 

 Here a2 = 25,    b2 = 9 

   e = 1 − 
b2

a2  =  1 − 
9
25  = 

4
5  

 The equations of the directrices are y = ± 
a
e  

   y = 
± 25

4  

 Equations of the latus rectum are y = ± ae 

   y = ± 4 

 Length of the latus rectum is 
2b2

a   = 
2 × 9

5   =  
18
5  

(iii)   4x2 + 3y2 + 8x + 12y + 4 = 0 

   (4x2 + 8x) + (3y2 + 12y) + 4 = 0 

   4(x2 + 2x) + 3(y2 + 4y) = − 4 

   4{(x + 1)2 − 1} + 3 {(y + 2)2 − 4} = − 4 

   4(x + 1)2 + 3(y + 2)2 = 12 

   
(x + 1)2

3   +  
(y + 2)2

4   = 1 
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X2

3   + 
Y2

4   = 1  where X = x + 1  ,  Y = y + 2 

 The major axis is along Y axis. Here a2 = 4,    b2 = 3 and  e = 
1
2  

 Equations of the directrices are    Y = ± 
a
e      i.e.   Y = ± 

2
(1/2)  

   Y = ± 4 

(i) Y = 4 ⇒ y + 2 = 4 ⇒ y = 2 

(ii) Y = − 4 ⇒ y + 2  =  − 4 ⇒ y = − 6 
 The directrices are y = 2 and y = − 6 

 Equations of the latus rectum are   Y = ± ae    i.e.   Y = ± 2 



1

2  

   Y = ± 1 
(i) Y = 1 ⇒ y + 2 = 1 
  ⇒ y = − 1 
(ii) Y = − 1 ⇒ y + 2 = 1 
  ⇒ y = − 3 
  ∴ Equation of the latus rectum are y = − 1 and y = − 3 

  Length of the latus rectum is 
2b2

a   = 
2 × 3

2   = 3 

Example 4.31 : Find the eccentricity, centre, foci, vertices of the following 

ellipses : (i)  
x2

25 + 
y2

9   = 1 (ii)  
x2

4  + 
y2

9   = 1  

 (iii)  
(x + 3)2

6  + 
(y − 5)2

4   = 1 (iv) 36x2 + 4y2 − 72x + 32y − 44 = 0 

Solution :   (i)
x2

25 + 
y2

9   = 1 

 The major axis is along x-axis  a2 = 25, b2 = 9 

  e = 
4
5  and  ae = 4 

 Clearly centre C is (0, 0),  
 Foci are (± ae, 0) = (± 4, 0) 

 Vertices are (± a, 0) = (± 5, 0) 

 
 
 

 
 
 

Fig. 4. 66 

A

(5,0)

y

xA′

(-5,0)

F2

(-4,0)
C (0,0) F1

(4,0)

A

(5,0)

y

xA′

(-5,0)

F2

(-4,0)
C (0,0) F1

(4,0)
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(ii) The major axis is along y-axis   a2 = 9, b2 = 4 

  e = 
5

3   and  ae = 5  

 Clearly centre C is (0, 0) 
 Foci are (0, ± ae) = (0, ± 5 ) 
 Vertices are (0, ± a) = (0,  ± 3) 

 
 
 
 
 
 

 
 
 

Fig. 4. 67 
(iii) Let x + 3 = X,   y − 5 = Y 

 ∴ The equation becomes 
X2

6   +  
Y2

4   = 1 

 The major axis is along X-axis    

   a2 = 6,   b2 = 4 

   e = 
1
3

  and  ae = 2  

 
Referred to X, Y 

Referred to x, y 
X = x + 3 ;  Y = y − 5 

Centre (0, 0)  X = 0  ;  Y = 0 
⇒   x + 3 = 0,  y − 5 = 0 
 x = − 3,  y = 5 
Centre C(− 3, 5) 

(± a, 0) i.e. ( )± 6, 0   

(i) ( )6, 0   

 

(i)  X = 6 ,  Y = 0 
 x + 3 = 6  ,  y − 5 = 0 
 x = 6  − 3,  y = 5 

   A ( )− 3 + 6, 5   

 
 
 
 
Vertices 

(ii) ( )− 6, 0   (ii) X = − 6 , Y = 0 
 x + 3 = − 6 , y − 5 = 0 
 x = − 3 − 6  , y = 5 

   A′ ( )− 3 − 6, 5    

C  (0,0)

F1    (0,√5) 

F2 (0,-√5)

A′(0,-3)

A(0,3)

y

xC  (0,0)

F1    (0,√5) 

F2 (0,-√5)

A′(0,-3)

A(0,3)

y

x
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(± ae, 0)   

i.e. ( )± 2 , 0   

(i) ( )2 , 0   

(i) X = 2 ,  Y = 0 
 x + 3 = 2 ,  y − 5 = 0 
 x = − 3 + 2 , y = 5 

   F1 ( )− 3 + 2 , 5    

 
 
 
 
foci 

(ii) ( )− 2, 0   (ii) X = − 2  ,  Y = 0 
 x + 3 = − 2 , y − 5 = 0 
 x = − 3 − 2 , y = 5 

   F2 ( )− 3 − 2 , 5   

 

 

 

 

 

 

Fig. 4. 68 

(iv) 36x2 + 4y2 − 72x + 32y − 44 = 0 

  36 (x2 − 2x) + 4 (y2 + 8y) = 44 

  36 {(x − 1)2 − 1} + 4 {(y + 4)2 − 16} = 44 

  36(x − 1)2 + 4 (y + 4)2 = 144 

  
(x − 1)2

4    +  
(y + 4)2

36   = 1 

  i.e.,         
X2

4    +  
Y2

36  = 1   where X = x − 1 , Y = y + 4 

 The major axis is along Y-axis. 

 a2 = 36,   b2= 4 

 e  =  
2 2

3   and  ae =  4 2   

 

C (-3,5) F1

(-3+√2,5)

y

x

X

Y

y = 5
AA1

(-3 - √6, 5)

F2

(-3- √2, 5)

A 

(-3 + √6, 5)

C (-3,5) F1

(-3+√2,5)

y

x

X

Y

y = 5
AA1

(-3 - √6, 5)

F2

(-3- √2, 5)

A 

(-3 + √6, 5)
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Referred to X, Y 

Referred to x, y 
X = x − 1 ;  Y = y + 4 

Centre (0, 0)  X = 0  ;  Y = 0 
⇒   x − 1 = 0,  y + 4 = 0 
 x = 1, y = − 4 
Centre C(1, − 4) 

(0, ± a) i.e. (0, ± 6) 
(i) (0, 6) 
 

(i)  X = 0,  Y = 6 
 x − 1 = 0 ,  y + 4 = 6 
 x = 1,   y = 2 
   A (1, 2) 

 
 
 
Vertices 

(ii) (0, − 6) (ii) X = 0, Y = − 6 
 x − 1 = 0, y + 4 = − 6 
 x − 1 = 0 , y + 4 = − 6 
 x = 1,  y = − 10 

   A′ (1, − 10)  
(0, ± ae)  
i.e.  ( )0, ± 4 2   

(i) ( )0, 4 2   

(i) X = 0 ;  Y = 4 2  
 x − 1 = 0,  y + 4 = 4 2  
 x = 1, y = 4 2  − 4 
   F1 ( )1, 4 2 − 4    

 
 
 
 
Foci 

(ii) ( )0, − 4 2   (ii) X = 0 ,  Y = − 4 2  
 x − 1= 0 ;  y + 4 = − 4 2  
 x = 1,  y = − 4 − 4 2  
   F2 ( )1, − 4 − 4 2   

 
 
 
 
 
 
 
 

Fig. 4. 69 

 
 

A(1,2)

A′(1,-10)

F1

F2           

C  (1,-4)

Where  

F1(1, 4 √2 – 4)

F2(1, - 4 – 4 √2)

X

Y

x

y

x = 1
A(1,2)

A′(1,-10)

F1

F2           

C  (1,-4)

Where  

F1(1, 4 √2 – 4)

F2(1, - 4 – 4 √2)

X

Y

x

y

x = 1
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4.4.6 Some practical problems : 
Example 4.32 : An arch is in the form of a semi-ellipse whose span is 48 feet 
wide. The height of the arch is 20 feet. How wide is the arch at a height of 10 
feet above the base? 
Solution : 
 Take the mid point of the 
base as the centre C (0, 0) 
 Since the base wide is 48 feet, 

the vertices A and A′ are (24, 0) 
and (− 24, 0) respectively. 

  
 
 
 
 

Fig. 4. 70 
 Clearly 2a = 48 and b = 20.  

 The corresponding equation is  
x2

242  + 
y2

202   = 1              … (1) 

      Let x1 be the distance between the pole whose height is 10m and the centre. 

 Then (x1, 10) satisfies the equation (1) 

   ∴  
x1

2

242  + 
102

202 = 1    ⇒  x1 = 12 3  

 Clearly the width of the arch at a height of 10 feet is 2x1  =  24 3  

 Thus the required width of arch is 24 3  feet. 

Example 4.33 : The ceiling in a hallway 20ft wide is in the shape of a semi 
ellipse and 18 ft high at the centre. Find the height of the ceiling 4 feet from 
either wall if the height of the side walls is 12ft. 
Solution : 
 Let PQR be the height of the 
ceiling which is 4 feet from the 
wall. 
 From the diagram PQ = 12 ft 
 To find the height QR 

 Since the width is 20ft, take A, 

A′ as vertices with A as (10, 0) and 

A′ as (− 10, 0). Take the midpoint 

of AA′ as the centre which is (0, 0) 

 
 
 
 
 
 

 
Fig. 4. 71 

C  (0,0)

(x1,10)

10

A′
(-24,0)

A
(24,0) 

Q P

20
x1

C  (0,0)

(x1,10)

10

A′
(-24,0)

A
(24,0) 

Q P

20
x1

R (6, y1)

A
(10,0)

A′
(-10,0)

10 6
C (0,0)

12

6
4

P

Q

R (6, y1)

A
(10,0)

A′
(-10,0)

10 6
C (0,0)

12

6
4

P

Q
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 From the diagram  AA′ = 2a  =  20   ⇒  a = 10 

   and           b = 18 − 12  =  6 

   ∴    
x2

100  +  
y2

36  = 1 

 Let QR be y1 then  R  is (6, y1) 

 Since R lies on the ellipse, 

   
36
100  +  

y1
2

36   = 1    ⇒   y1 = 4.8 

   ∴  PQ +  QR = 12 + 4.8 

 ∴  The required height of the ceiling is 16.8 feet. 
Example 4.34 : The orbit of the earth around the sun is elliptical in shape with 
sun at a focus. The semi major axis is of length 92.9 million miles and 
eccentricity is 0.017. Find how close the earth gets to sun and the greatest 
possible distance between the earth and the sun. 
Solution : 
 Semi-major axis  CA is 
 a = 92.9 million miles 
 Given e = 0.017 
 The closest distance of the 
earth from the sun = FA 
 and farthest distance of the 

earth from the sun = FA′ 

 
 
 
 
 
 

Fig. 4. 72 

   CF  =  ae = 92.9 × 0.017 

   FA  =  CA − CF = 92.9 − 92.9 × 0.017 

    = 92.9 [1 − 0.017]  

    = 92.9 × 0.983 = 91.3207 million miles 

   FA′  =  CA′ + CF = 92.9 + 92.9 × 0.017 
    = 92.9 (1 + 0.017) 

    = 92.9 × 1.017 = 94.4793 million miles 

Example 4.35 : A ladder of length 15m moves with its ends always touching 
the vertical wall and the horizontal floor. Determine the equation of the locus of 
a point P on the ladder, which is 6m from the end of the ladder in contact with 
the floor. 

C  (0,0)

EARTH

SUNA′ A x

y

FC  (0,0)

EARTH

SUNA′ A x

y

F
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Solution : 
 Let AB be the ladder and P(x1, y1) be 

a point on the ladder such that AP = 6m. 

 Draw PD perpendicular to x-axis and 
PC perpendicular to y-axis. 

 Clearly the triangles ADP and PCB 
are similar.  

 ∴  
PC
DA  = 

PB
AP   =  

BC
PD  

 i.e.,    
x1
DA  = 

9
6   =  

BC
y1

  

 

 

 

 

 

 

 

 

Fig. 4. 73 

 ⇒       DA = 
6x1
9    =  

2x1
3     ;   BC = 

9y1
6    =  

3
2  y1 

 OA = OD + DA = x1 + 
2x1
3    =  

5
3  x1 ;  OB = OC + BC = y1 + 

3y1
2    =  

5
2  y1 

 But    OA2  +  OB2 = AB2    ⇒   
25
9  x1

2 + 
25
4  y1

2 = 225 

 
x1

2

9   + 
y1

2

4   = 9 

 ∴ The locus of (x1, y1) is 
x2

81  + 
y2

36  = 1, which is an ellipse. 

EXERCISE 4.2 
 (1) Find the equation of the ellipse if  

  (i) one of the foci is (0, − 1), the corresponding directrix is  

   3x + 16 = 0 and  e = 
3
5 

  (ii) the foci are (2, − 1), (0, −1) and e = 
1
2 

  (iii) the foci are (± 3, 0) and the vertices are (± 5, 0) 

  (iv) the centre is (3, − 4), one of the foci is ( )3 + 3, − 4  and e = 
3

2  

y1

9

6

C

O A

B

x

y

D

y1

x1

x1

P(x1y1)
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  (v) the centre at the origin, the major axis is along x-axis, e = 
2
3 and 

passes through the point 



2,  

− 5
3  

  (vi) the length of the semi major axis, and the latus rectum are 7 and 
80
7  

respectively, the centre is (2, 5) and the major axis is parallel to  
y-axis. 

  (vii) the centre is (3, − 1), one of the foci is (6, − 1) and passing through 
the point (8, − 1). 

  (viii) the foci are (± 3, 0), and the length of the latus rectum is 
32
5  . 

  (ix) the  vertices are (± 4, 0) and e = 
3

2  

 (2) If the centre of the ellipse is (4, − 2) and one of the focus is (4, 2),  
find the other focus? 

 (3) Find the locus of a point which moves so that the sum of its distances 
from (3, 0) and (− 3, 0) is 9 

 (4) Find the equations and length of major and minor axes of 

  (i) 9x2 + 25y2 = 225 (iii) 9x2 + 4y2 = 20 

  (ii) 5x2 + 9y2 + 10x − 36y − 4 = 0 (iv) 16x2 + 9y2 + 32x − 36y − 92 = 0 
 (5) Find the equations of directrices, latus rectum and lengths of latus 

rectums of the following ellipses : 

  (i) 25x2 + 169y2 = 4225 (ii) 9x2 + 16y2 = 144 

  (iii) x2 + 4y2 − 8x − 16y − 68 = 0 (iv) 3x2 + 2y2 − 30x − 4y + 23 = 0 
 (6) Find the eccentricity, centre, foci, vertices of the following ellipses and 

draw the diagram : 

  (i) 16x2 + 25y2 = 400 (ii) x2 + 4y2 − 8x − 16y − 68 = 0 

  (iii) 9x2 + 4y2 = 36 (iv) 16x2 + 9y2 + 32x − 36y = 92 
 (7) A kho-kho player in a practice session while running realises that the sum 

of the distances from the two kho-kho poles from him is always 8m. Find 
the equation of the path traced by him if the distance between the poles is 
6m. 

 (8) A satellite is travelling around the earth in an elliptical orbit having the 
earth at a focus and of eccentricity 1/2 . The shortest distance that the 
satellite gets to the earth is 400 kms. Find the longest distance that the 
satellite gets from the earth. 
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 (9) The orbit of the planet mercury around the sun is in elliptical shape with 
sun at a focus. The semi-major axis is of length 36 million miles and the 
eccentricity of the orbit is 0.206. Find (i) how close the mercury gets to 
sun?  (ii) the greatest possible distance between mercury and sun. 

 (10) The arch of a bridge is in the shape of a semi-ellipse having a horizontal 
span of 40ft and 16ft high at the centre. How high is the arch, 9ft from 
the right or left of the centre. 

4.5 Hyperbola : 
Definition: The locus of a point whose distance from a fixed point bears a constant 
ratio, greater than one to its distance from a fixed line is called a hyperbola. 

Note : Eventhough the syllabus does not require the derivation of 
standard equation and the tracing of hyperbola (4.5.1, 4.5.2) and it 
needs only the standard equation and the diagram, the equation is 
derived and the curve is traced for better understanding. 

 We shall now derive the standard equation of the hyperbola. 

4.5.1. Standard equation of the hyperbola :  
Given : 

 Fixed point (F) 
 Fixed line (l) 
 Eccentricity e, (e > 1) 
 Moving point P(x, y) 

Construction 
 Plot the fixed point F and 

draw the fixed line ‘l’. 
 Drop a perpendicular (FZ) 

from F to l. 

 
 
 
 
 
 
 
 

Fig. 4. 74 

 Drop a perpendicular (PM) from P to l. 

 Plot the points A, A′ which divides FZ internally and externally in the ratio  
e : 1 respectively. 

 Take AA′ = 2a and treat it as x-axis. 

 Draw a perpendicular bisector of AA′ and treat it as y-axis. 

 Let C be the origin. The known points are C(0, 0), A(a, 0), A′(− a, 0). 
To find the co-ordinates of F and M do the following : 

 Since A, A′ divides FZ internally and externally in the ratio e : 1 respectively, 

F(ae,0)

y

M P(x,y)

x

l

A′ C Z A F(ae,0)

y

M P(x,y)

x

l

A′ C Z A
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FA
AZ  = 

e
1  

 ∴ FA = e AZ 

 i.e. CF − CA = e (CA − CZ) 

 ∴ CF − a = e (a − CZ) …(1) 

 
FA′

A′Z
  = 

e
1  

 ∴ FA′ = e A′Z 

 i.e. A′C + CF = e (A′C + CZ) 

 ∴ a + CF = e(a + CZ) … (2) 

   (2) − (1)    ⇒    2a = e [2CZ]  ⇒  CZ = 
a
e  

   (2) + (1)    ⇒    2CF = e(2a)   ⇒    CF = ae 

 ∴ M is 



a

e,  y   and F is (ae, 0) 

To obtain the equation of the hyperbola we do the following: 
 Since P is a point on the hyperbola, 

 We have  
FP
PM  = e   ⇒   FP2 = e2PM2 

   ∴   (x − ae)2 + (y − 0)2 = e2 









x − 

a
e

2
 + (y − y)2   

   x2 − 2aex + a2e2 + y2 = e2 
[e2x2 − 2aex + a2]

e2   

   x2 − e2x2 + y2 = a2 − a2e2 

   (e2 − 1)x2 − y2 = a2(e2 − 1) 

   
x2

a2  −  
y2

a2(e2 − 1)
 = 1 

 ∴    
x2

a2   −  
y2

b2  = 1 where b2 = a2 (e2 − 1) is a positive quantity. 

 This is the required standard equation of the hyperbola. 

4.5.2 Tracing of the hyperbola 
x2

a2  − 
y2

b2  = 1 

(i) Symmetry : 
 The hyperbola is symmetric about x-axis, y-axis and hence the hyperbola is 
symmetric about the origin. 
(ii) Special points : 
 The hyperbola does not pass through the origin. 
 To find the points on x-axis, put y = 0, we get x = ± a. Therefore the curve 

meets the x-axis at A(a, 0) and A′(− a, 0). 
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 To find the points on y-axis, put x = 0, we get y2 = −b2. i.e., y is imaginary. 
Therefore the curve does not meet the y-axis. 
(iii) Existence of the curve : 

 Write the equation of the hyperbola as y = ± 
b
a   x2 − a2 .  If x2 − a2 < 0 

i.e., − a < x < a, y is imaginary.  i.e., the curve does not exist for − a < x < a. 
Therefore the curve exists for x ≤ − a and x ≥ a. Note that for all y, the curve 
exists. 
(iv) The curve at infinity : 

 As x increases y2 also 
increases i.e., as x → ∞,  

 y2 → ∞.  as x → ∞, y → ± ∞. 
 Thus the curve branches 
out to infinity on either side. 

 
 
 
 
 
 

Fig. 4. 75 

4.5.3 Important definitions regarding hyperbola : 
 Focus : The fixed point is called a focus F1 (ae, 0) of the hyperbola. 

 Directrix : The fixed line is called the directrix of the hyperbola and its 

equation is x = 
a
e  . 

 Transverse axis : The line segment AA′ joining the vertices is called the 
transverse axis and the length of the transverse axis is 2a. The equation of 
transverse axis is y = 0. Note that the transverse axes cut both the branches of 
the curve. 
 Conjugate axis : The line segment joining the points B(0, b) and  

B′(0, − b) is called the conjugate axis. The length of the conjugate axis is 2b. 
The equation of the conjugate axis is x = 0 
 Centre : The point of intersection of the transverse and conjugate axes of 
the hyperbola is called the centre of the hyperbola. Here C(0, 0) is called the 
centre of the hyperbola. 
 Vertices : The points of intersection of the hyperbola and its transverse 
axis is called its vertices. The vertices of the hyperbola are A(a, 0) and  

A′(− a, 0).  
 As in the case of ellipse, hyperbola also has the special property of the 

second focus F2(− ae, 0) and the second directrix x = − 
a
e  . 

C F1

(ae,0)

F2

(-ae,0) Z′ Z
A′ A

y

x

x = -a/e x = a/e

B

B′

C F1

(ae,0)

F2

(-ae,0) Z′ Z
A′ A

y

x

x = -a/e x = a/e

B

B′
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Eccentricity :  e = 1 + 
b2

a2 

Remark : 

 In the case of a hyperbola e > 1. As e → 1,  
b
a → 0  i.e., as e → 1, b is very 

small related to a and the hyperbola becomes a pointed nose. As e → ∞, b is 
very large related to a and the hyperbola becomes flat. 
 Latus rectum : It is a focal chord perpendicular to the transverse axis of 
the hyperbola. The equations of the latus rectum are x = ± ae. 
End points of latus rectum and length of latus rectum : 

 To find the end points, solve x = ae … (1)     and   
x2

a2  − 
y2

b2  = 1 … (2) 

 Using (1) in (2) we get 

   
a2 e2

a2    −  
y2

b2  = 1 

   ∴  
y2

b2  = e2 − 1 

   ∴  y2 = b2 (e2 − 1) 

    = b2 . 






b2

a2     (‡ b2 = a2 (e2 − 1)) 

   ∴  y = ± 
b2

a   

 If L1 and L1
′ are the end points of one latus rectum then L1 is 





ae,  
b2

a   and 

L1
′ is 





ae,  − 
b2

a   . 

 Similarly the end points of the other latus rectum are 





− ae,  ±  
b2

a   and the 

length of the latus rectum is 
2b2

a   . 

 For the above discussed hyperbola, the transverse axis is along x-axis. 
There is another standard hyperbola in which the transverse axis is along  
y-axis. 
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4.5.4 The other form of the hyperbola: 
 If the transverse axis is along y-axis and the conjugate axis is along x-axis, 

then the equation of the hyperbola is of the form 
y2

a2  −  
x2

b2  =  1 

 For this type of hyperbola, we have the following as explained in the 
earlier hyperbola 

 Centre : C (0, 0) 

 Vertices : A (0, a),  A′ (0, − a) 

 Foci : F1 (0, ae), F2 (0, − ae) 

 Equation of transverse axis  is :  x = 0 

 Equation of conjugate axis is  : y = 0 

 End points of conjugate axis : (b, 0),  (− b, 0) 

 Equations of latus rectum  : y = ± ae 

 Equations of directrices  : y = ± 
a
e  

 End points of latus rectum : 





± 
b2

a ,  ae  , 





± 
b2

a ,  − ae   

 
 
 
 
 
 
 
 
 
 
 

 
 
 

Fig. 4. 76 

C

F1   (0, ae)

F2    (0, - ae) 

Z′

Z

A′(0, -a)

A(0,a)

y

x

y = -a/e

y = a/e

BB′
C

F1   (0, ae)

F2    (0, - ae) 

Z′

Z

A′(0, -a)

A(0,a)

y

x

y = -a/e

y = a/e

BB′
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Example 4. 36 : Find the equation of hyperbola whose directrix is 2x + y = 1, 
focus (1, 2) and eccentricity 3  . 

Solution:  

  Let P(x, y) be any point on the hyperbola. Draw PM perpendicular to the 
directrix. 

 By definition,   
FP
PM  = e   ⇒  ∴ FP2 = e2 . PM2 

i.e., (x − 1)2 + (y − 2)2= 3 




2x + y − 1

4 + 1

2

 

  (x − 1)2 + (y − 2)2 = 
3
5  (2x + y − 1)2 

i.e., 7x2 + 12xy − 2y2 − 2x + 14y − 22 = 0 
 This is the required equation of the 
hyperbola. 

 
 
 
 
 
 
 

Fig. 4. 77 

Example 4.37 : Find the equation of the hyperbola whose transverse axis is 
along x-axis. The centre is (0, 0) length of semi-transverse axis is 6 and 
eccentricity is 3. 

Solution:  

 Since the transverse axis is along x-axis and the centre is (0, 0), the 

equation of the hyperbola is of the form  
x2

a2 − 
y2

b2  = 1 

 Given that semi-transverse axis  
a = 6, eccentricity e = 3 

 We know that b2 = a2 (e2 − 1) 

  ∴  b2 = 36(8) 
   = 288 

 ∴ The equation of the hyperbola is 

  
x2

36  −  
y2

288 = 1 

   
 
 
 
 
 

Fig. 4. 78 

Example 4.38 : Find the equation of the hyperbola whose transverse axis is 
parallel to x-axis, centre is (1, 2), length of the conjugate axis is 4 and 
eccentricity e = 2. 
 

F(1,2)

P(x,y)M

2x
 +

 y
 -

1=
 0

F(1,2)

P(x,y)M

2x
 +

 y
 -

1=
 0

F2

C
F1

A′ A

y

x
6F2

C
F1

A′ A

y

x
6



 224

Solution:  

 Since the transverse axis is parallel to x-axis, the equation is of the form 

   
(x − h)2

a2   −  
(y − k)2

b2  = 1 

 Here centre C(h, k) is (1, 2). 
 The length of conjugate axis 2b = 4 and e = 2 

   b2 = a2 (e2 − 1) 

   4 = a2 (4 − 1) 

   ⇒  a2 = 
4
3  

 ∴ The required equation is  
(x − 1)2

4/3    −  
(y − 2)2

4  = 1 

Example 4.39 : Find the equation of the hyperbola whose centre is (1, 2). The 

distance between the directrices is 
20
3  , the distance between the foci is 30 and 

the transverse axis is parallel to y-axis. 
Solution:  
 Since the transverse axis is parallel to y-axis, the equation is of the form 

   
(y − k)2

a2   −  
(x − h)2

b2  = 1 

 Here centre C(h, k) is (1, 2) 

 The distance between the directrices 
2a
e   = 

20
3     ⇒  

a
e   =  

10
3   

 The distance between the foci,  2ae = 30   ⇒     ae = 15 

   
a
e (ae) = 

10
3   × 15   ⇒     a2 = 50 

   Also     
ae
a/e  ⇒ e2 = 

9
2  

   b2 = a2 (e2 − 1)    ⇒  b2 = 50 



9

2 − 1   = 175 

  The required equation is  
(y − 2)2

50   −  
(x − 1)2

175   =  1 

Example 4.40 : Find the equation of the hyperbola whose transverse axis is 
parallel to y-axis, centre (0, 0), length of semi-conjugate axis is 4 and 
eccentricity is 2. 
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Solution:   

 From the given data the hyperbola is of the form   
y2

a2 − 
x2

b2  =  1 

 Given that semi-conjugate axis b = 4 and e = 2, 

 b2 = a2 (e2 − 1) 

 42 = a2 (22 − 1) 

 ∴   a2 = 
16
3   

Hence the equation of the hyperbola is 
y2

16/3  −  
x2

16 = 1 

 or        3y2 − x2 = 16  
Example 4.41 : Find the equation of the hyperbola whose foci are (± 6, 0) and 
length of the transverse axis is 8. 
Solution:  
 From the given data the 
transverse axis is along x-axis. 
 ∴ The equation is of the form 

  
(x − h)2

a2   −  
(y − k)2

b2  = 1 

 The centre is the midpoint of  
F1 and F2

 

 
 
 
 
 
 

Fig. 4. 79 

 i.e.,  C is 



− 6 + 6

2   ,  
0 + 0

2   = (0, 0) 

 The length of the transverse axis 2a = 8,  ⇒  a = 4 
   F1F2 = 2ae  =  12    ae = 6 

   ∴ 4e = 6 

   e = 
6
4   =  

3
2  

   b2 = a2 (e2 − 1) = 16 



9

4 − 1   = 
16 × 5

4  = 20 

∴ The required equation is  
x2

16   −  
y2

20  =  1 

F2(-6,0)

y

x
C  (0,0)

F1(6,0)F2(-6,0)

y

x
C  (0,0)

F1(6,0)
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Example 4.42 : Find the equation of the hyperbola whose foci are (5, ± 4) and 

eccentricity is 
3
2  . 

Solution:  
 From the given data the transverse 
axis is parallel to y-axis and hence 
the equation of the hyperbola is of 
the form  

 
(y − k)2

a2  − 
(x − h)2

b2  = 1 

 The centre C (h, k) is the midpoint 
of  F1 and F2

 

 
 
 

 
 
 
 

Fig. 4. 80 

 i.e.,  C is 



5 + 5

2   ,  
4 − 4

2   = (5, 0) 

   F1F2 = 2ae  =  (5 − 5)2 + (4 + 4)2  = 8 

   ae = 4 

   But   e = 
3
2    ∴ a = 

8
3  

   b2 = a2 (e2 − 1)  =  
64
9    



9

4 − 1   

    = 
80
9   

∴ The required equation is 

   
(y − 0)2

64/9   − 
(x − 5)2

80/9   = 1    or    
9y2

64    −  
9(x − 5)2

80   = 1 

Example 4.43 : Find the equation of the hyperbola whose centre is (2, 1), one 
of the foci is (8, 1) and the corresponding directrix is x = 4. 
Solution:  
 From the given data the equation 
is of the form  

  
(x − h)2

a2  − 
(y − k)2

b2  = 1 

 Centre C (h, k) is (2, 1) 
 CF1 = ae = 6 

 (Draw CZ perpendicular to x = 4) 

 
 
 
 
 
 

Fig. 4. 81 

C  (0,0)

F1(5,4)

F2(5,-4)

y

x
C  (0,0)

F1(5,4)

F2(5,-4)

y

x

C(2,1)

y

x

F1(8,1)
y = 1

x = 4

C(2,1)

y

x

F1(8,1)
y = 1

x = 4
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 The distance between the centre and directrix   

   CZ = 
a
e   =  2 

   ∴  ae . 
a
e  = 6 × 2  ⇒  a2 = 12 

   
ae
a/e  = 

6
2    ⇒  e2 = 3 

   b2 = a2 (e2 − 1)   ∴   b2 = 12(3 − 1)  =  24 
 ∴ The required equation is 

   
(x − 2)2

12   −  
(y − 1)2

24  = 1 

Example 4.44 : Find the equation of the hyperbola whose foci are (0, ± 5) and 
the length of the transverse axis is 6. 
Solution:  
 From the given data the transverse axis is 
along y-axis and hence the equation is of 
the form 

  
(y − k)2

a2  − 
(x − h)2

b2  = 1 

 The centre C (h, k) is the midpoint of  
F1 and F2

 

 
 
 
 
 
 
 

 
Fig. 4. 82 

 i.e.  C is 



0 + 0

2   ,  
5 − 5

2   = (0, 0) 

   F1F2 = 2ae  =  10 

 The length of the transverse axis  = 2a = 6 

   ⇒   a = 3   and e  =  
5
3  

   b2 = a2 (e2 − 1)  

    = 9 



25

9  − 1   

    = 16 

 ∴ The required equation is  
y2

9   −  
x2

16=1 

F1(0,5)

F2(0,-5)

x

y

(0,0)
C

F1(0,5)

F2(0,-5)

x

y

(0,0)
C
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Example 4.45 : Find the equation of the hyperbola whose foci are ( )0, ± 10  
and passing through (2, 3). 
 
Solution:  
 From the data, the transverse axis is along 
the y-axis. ∴ it is of the form  

 
y2

a2 − 
x2

b2 = 1 

 Given that the foci are (0, ± ae) = 

( )0, ± 10  

 ⇒   ae = 10  

 Also  b2 = a2 (e2 − 1) =  a2e2 − a2 

 b2 = 10 − a2 

 

 
 

 
 
 
 
 

Fig. 4. 83 

 ∴Equation of the hyperbola is  
y2

a2  −  
x2

10 − a2  =  1 

 It passes through (2, 3), 

   
9

a2  −  
4

10 − a2 = 1 

   
9(10 − a2) − 4a2

a2 (10 − a2)
 = 1 

   90 − 9a2 − 4a2 = 10a2 − a4 

   or  a4 − 23a2 + 90 = 0 

   (a2 − 18)  (a2 − 5) = 0 

   a2 = 18   or   5 

 If a2 = 18,   b2 = 10 − 18 = − 8 which is impossible. 

 If a2 = 5,   b2 = 10 − 5 = 5 

 ∴ Equation of the hyperbola is  
y2

5    −  
x2

5   = 1   or   y2 − x2 = 5 

Example 4.46 : Find the equations and length of transverse and conjugate axes 

of the hyperbola 
x2

9    −  
y2

4   =  1 

 

F1(0, √10)

F2(0, -√10)

x

y

(0,0)
C

F1(0, √10)

F2(0, -√10)

x

y

(0,0)
C
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Solution:  
 The centre is at the origin, the transverse axis is along x-axis and the 
conjugate axis is along the y-axis. i.e., transverse axis is x-axis i.e., y = 0 and the 
conjugate axis y-axis i.e.,  x = 0. 

 Hence a2 = 9,   b2 = 4     ⇒   a = 3,     b = 2 
  ∴ Length of transverse axis = 2a = 6 
      Length of conjugate axis = 2b = 4 
Example 4.47 : Find the equations and length of transverse and conjugate axes 

of the hyperbola 16y2 − 9x2 = 144 

Solution:  
y2

9   − 
x2

16 = 1 

 The centre is at the origin, the transverse axis is along y-axis, and the 
conjugate axis is along x-axis. 
 ∴ The transverse axis is y-axis, i.e.  x = 0 
 The conjugate axis is x-axis i.e. y = 0. 

 Here a2 = 9,     b2 = 16    ⇒   a = 3,     b = 4 
  ∴ The length of transverse axis = 2a = 6 
  The length of conjugate axis = 2b  =  8 
Example 4.48 : Find the equations and length of transverse and conjugate axes 

of the hyperbola 9x2 − 36x − 4y2 − 16y + 56 = 0 

Solution:   

   9(x2 − 4x) − 4(y2 + 4y) = − 56 

   9{(x − 2)2 − 4}  −  4 {(y + 2)2 − 4} = − 56 

   9(x − 2)2 − 4(y + 2)2 = 36 − 16 − 56 

   9(x − 2)2 − 4(y + 2)2 = − 36 

   4(y + 2)2  −  9(x − 2)2 = 36 

   
(y + 2)2

9    −  
(x − 2)2

4   = 1 

   
Y2

9    −  
X2

4   = 1  where 


X = x − 2
Y = y + 2 

 Clearly the transverse axis is along y-axis and the conjugate axis is along x-
axis. i.e. transverse axis is y-axis  or X = 0     i.e., x − 2 = 0 
 The conjugate axis is X-axis or Y = 0   i.e., y + 2 = 0 

 Here  a2 = 9,    b2  =  4    ⇒  a = 3,    b  = 2 
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  ∴ The length of transverse axis = 2a = 6 
  The length of conjugate axis = 2b  =  4 
Example 4.49 : Find the equations of directrices, latus rectum and length of 

latus rectum of the hyperbola 
x2

9   − 
y2

4   = 1 

Solution:   
 The centre is at the origin and the transverse axis is along x-axis. 

 The equations of the directrices are x = ± 
a
e 

 The equations of the latus rectum are x = ± ae 

 Length of the latus rectum = 
2b2

a  

 Here   a2 = 9,    b2 = 4 

   e = 1 + 
b2

a2  =  1 + 
4
9   =  

13
3   

 ∴ The equations of the directrices are  

   x = ± 
3

13/3
  i.e.  x = ± 

9
13

  

 The equation of the latus rectum are x = ± 13 

 Length of the latus rectum is  
2b2

a  = 
8
3  

Example 4. 50 : Find the equations of directrices, latus rectum and length of 

latus rectum of the hyperbola 16y2 − 9x2 = 144  

Solution:   
y2

9   −  
x2

16 = 1 

 Here   a2 = 9,    b2 = 16      e  =  
5
3  

 The transverse axis is along the y-axis. 

 ∴ The equations of the directrices are  y = ± 
a
e    i.e.,  y = ± 

9
5  

 The equation of the latus rectum are y = ± ae   i.e.,   y = ± 5 

 Length of the latus rectum is 
2b2

a   =  
32
3  
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Example 4.51 : Find the equations of directrices, latus rectum and length of 

latus rectum of the hyperbola 9x2 − 36x − 4y2 − 16y + 56 = 0 

Solution:   By simplifying we get 
Y2

9   −  
X2

4  = 1  where 


Y = y + 2
X = x − 2 

 Here   a2 = 9,    b2 = 4 

   e = 1 + 
b2

a2    =  
13
3   

   ae = 13 ,   
a
e   =  

9
13

  

 The transverse axis is along Y-axis. 

 ∴ The equations of the directrices are  Y = ± 
a
e    i.e.  Y = ± 

9
13

  

 (i) Y = 
9
13

       ⇒    y + 2  =  
9
13

    ⇒    y = 
9
13

 − 2 

 (ii) Y = − 
9
13

    ⇒    y + 2  =  
− 9

13
    ⇒    y = 

− 9
13

 − 2  

 The equations of the latus rectum are Y = ± ae   i.e.  Y = ± 13  
 (i) Y = 13       ⇒    y + 2  =     13    ⇒    y = 13 − 2 
 (ii) Y = − 13    ⇒    y + 2  =  − 13    ⇒    y = − 13 − 2 

 Length of the latus rectum is 
2b2

a   =  
8
3 

Example 4.52 : The foci of a hyperbola coincide with the foci of the ellipse  

x2

25  + 
y2

9  = 1. Determine the equation of the hyperbola if its eccentricity is 2.  

Solution : 

 The equation of the ellipse is  
x2

25  + 
y2

9  = 1 

 ⇒  a2 = 25,  b2 = 9,                e  = 1 − 
b2

a2  =  1 − 
9
25   =  

4
5 

   ∴   ae = 4 

 The foci of the ellipse are (± ae, 0)  =  (± 4, 0) 
 Given that the foci of the hyperbola coincide with the foci of the ellipse, 
foci of the hyperbola are (± ae, 0) = (± 4, 0) 
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   ∴  ae = 4 
 Given that the eccentricity of the hyperbola is 2 

   a(2) = 4     ⇒  a =  2 

 For a hyperbola b2 = a2 (e2 − 1) 

    = a2 e2 − a2 

    = 16 − 4 = 12 

 ∴ The equation of the hyperbola is  
x2

4   − 
y2

12 = 1 

Property (without proof) : 
 A point moves such that the difference of its distances from two fixed 
points in a plane is a constant. The locus of this point is a hyperbola and this 
difference is equal to the length of the transverse axis. 
Example 4.53 : Find the equation of the locus of all points such that the 
differences of their distances from (4, 0) and (− 4, 0) is always equal to 2. 

Solution : 

 By the property, the locus is a hyperbola. Take the fixed points as foci. 

 ∴ F1 is (4, 0) and F2 is (− 4, 0) 

 Let P(x, y) be a point on the hyperbola. 

 F1P   F2P = length of transverse axis = 2a = 2 

 ∴ a = 1 
Centre is the midpoint of F1F2 = (0, 0) 

 Hence from  the given data the 

hyperbola is of the form 
x2

a2 − 
y2

b2 = 1 

  F1F2 = 2ae = 8 

  ae = 4  ⇒  e = 4 

  b2 = a2 (e2 − 1) 

   = 1(16 − 1) = 15 

 
 
 
 
 
 
 

Fig. 4. 84 

 ∴  The equation is 
x2

1    −  
y2

15   =  1 

Alternate method: 
 Let P(x, y) be a point on the hyperbola and let F1and F2 be the fixed points 

(4, 0) and (− 4, 0). 

P(x,y)

x

y

F2 F1
C  (0,0)

P(x,y)

x

y

F2 F1
C  (0,0)
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 It is given that F1P  F2P = 2 

 (x − 4)2 + (y − 0)2   (x + 4)2 + (y − 0)2  =  2 

 Simplifying, we get  
x2

1   −  
y2

15  =  1 

Example 4.54 : Find the eccentricity, centre, foci and vertices of the hyperbola 

x2

4   −  
y2

5   =  1 and also trace the curve 

Solution : 

     a2 = 4,   b2 = 5      

    ⇒   e = 1 + 
b2

a2  =  
3
2  

  ∴   ae =  2 × 
3
2   =  3. 

The transverse axis is along the  
x-axis 

  
 
 
 
 
 
 

Fig. 4. 85 

 Centre   : (0, 0) 

 Foci : (± ae, 0) = (± 3, 0) 

 vertices : (± a, 0) = (± 2, 0) 
Example 4.55 : Find the eccentricity, centre, foci and vertices of the hyperbola  

y2

6   −  
x2

18  =  1 and also trace the curve.  

Solution : 

      a2 = 6   b2 = 18 

    ⇒    e = 1 + 
b2

a2 =  
24
6  = 2 

  ∴ ae = 2 6  
The transverse axis is along the y-axis 

  
 
 
 
 
 

 
 
 

Fig. 4. 86 
 Centre   : (0, 0) 
 Foci are : (0, ± ae) = ( )0, ± 2 6  

 vertices are : (0, ± a) = ( )0, ± 6  

C  (0,0)A′

(-2,0)

A

(2,0)

F2

(-3,0) 

F1

(3,0)

y

xC  (0,0)A′

(-2,0)

A

(2,0)

F2

(-3,0) 

F1

(3,0)

y

x

C  (0,0)

F1    (0,2√6)

A′(0, -√6)

A(0, √6)

F2   (0,-2√6)

y

xC  (0,0)

F1    (0,2√6)

A′(0, -√6)

A(0, √6)

F2   (0,-2√6)

y

x
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Example 4.56 : Find the eccentricity, centre, foci and vertices of the hyperbola 

9x2 − 16y2 − 18x − 64y − 199 = 0 and also trace the curve. 

Solution:   9(x2 − 2x) − 16 (y2 + 4y) = 199 

   9{(x − 1)2 − 1}  −  16 {(y + 2)2 − 4} = 199 

   9(x − 1)2 − 16(y + 2)2 = 199 + 9 − 64 

  9(x − 1)2 − 16(y + 2)2 = 144 

  
(x − 1)2

16    −  
(y + 2)2

9   = 1 

  i.e.,     
X2

16   −  
Y2

9   = 1  where 


X = x − 1
Y = y + 2 

  a2 = 16,    b2 = 9    ⇒   e = 1 + 
b2

a2 =  
5
4  

  ae = 4 × 
5
4  = 5 

 The transverse axis is parallel to X-axis. 

 Referred to X, Y Referred to x, y 

X = x − 1, Y = y + 2 

Centre (0, 0)  X = 0   ;  Y = 0   

 x − 1 = 0 ;   y + 2 = 0 

 x = 1 ; y = − 2 

 ∴  C (1, − 2) 

(± ae, 0) is (± 5, 0) 

(i) (5, 0) 

(i) X = 5   ;  Y = 0   

 x − 1 = 5 ;   y + 2 = 0 

 x = 6 ; y = − 2 

 ∴  F1 (6, − 2) 

 

 

 

Foci 

 

 

 

(ii) (− 5, 0) (ii) X = − 5   ;  Y = 0   

 x − 1 = − 5 ;   y + 2 = 0 

 ∴  F2 (− 4, − 2) 
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(± a, 0) i.e. (± 4, 0) 

(i) (4, 0) 

(i) X = 4   ; Y = 0   

 x − 1 = 4 ;  y + 2 = 0 

 ∴  A (5, − 2) 

 

Vertices 

(ii) (− 4, 0) (ii) X = − 4   ; Y = 0   

 x − 1 = − 4 ;  y + 2 = 0 

 ∴  A′ (− 3, − 2) 

 
  
 
 
 
 
 
 
 

Fig. 4. 87 

Example 4.57 : Find the eccentricity, centre, foci and vertices of the following 

hyperbola and draw the diagram :  9x2 − 16y2 + 36x + 32y + 164 = 0 

Solution:   

   9(x2 + 4x) − 16(y2 − 2y) = − 164 

   9{(x + 2)2 − 4}  −  16 {(y − 1)2 − 1} = − 164 

   9(x + 2)2 − 16(y − 1)2 = − 164 + 36 − 16 

   16(y − 1)2 − 9(x + 2)2 = 144 

  
(y − 1)2

9    −  
(x + 2)2

16   = 1 

  
Y2

9    −  
X2

16  = 1  where 


X = x + 2
Y = y − 1 

  a2 = 9,    b2 = 16    ⇒   e = 1 + 
b2

a2 =  
5
3 

  ae = 5 

C  (1,-2)A′

(-3,-2)

A

(5,-2)

F2

(-4, -2) 

F1

(6,-2)

Y

X

x

y

C  (1,-2)A′

(-3,-2)

A

(5,-2)

F2

(-4, -2) 

F1

(6,-2)

Y

X

x

y
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 The transverse axis is parallel to Y-axis. 

 Referred to X, Y Referred to x, y 
X = x + 2, Y = y − 1 

Centre (0, 0)  X = 0   ;  Y = 0   
 x + 2 = 0 ;   y − 1 = 0 
 x = − 2 ; y = 1 
 ∴  C (− 2, 1) 

(0, ± ae) i.e., (0, ± 5) 

(i) (0, 5) 
(i) X = 0   ;  Y = 5 
 x + 2 = 0 ;   y − 1 = 5 
 x = − 2 ; y = 6 
 ∴  F1 (− 2, 6) 

 
 
 
 
 
 
 
 
Foci 

(ii) (0, − 5) (ii) X = 0   ;  Y = −  5 
 x + 2 = 0 ;   y − 1 = − 5 
 x = − 2 ; y = − 4 
 ∴  F2 (− 2, − 4) 

(0, ± a)  
(i) (0, 3) 

(i) X = 0   ;  Y = 3   
 x + 2 = 0 ;   y − 1 = 3 
 ∴  A (− 2, 4) 

 
 
Vertices 

(ii) (0, − 3) (ii) X = 0   ;  Y = − 3   
 x + 2 = 0 ;   y − 1 = − 3 
 x = − 2 ; y = − 2 

 ∴  A′ (− 2, − 2) 
 
 
 
 
 
 
 
 

 

 

 

Fig. 4. 88 

C  (-2,1)

A′  (-2,-2)

A   (-2,4)

F2   (-2,-4) 

F1    (-2,6)

Y

X

x

y

y = 1

x = -2

C  (-2,1)

A′  (-2,-2)

A   (-2,4)

F2   (-2,-4) 

F1    (-2,6)

Y

X

x

y

y = 1

x = -2
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Example 4.58 :  
 Points A and B are 10 km apart and it is determined from the sound of an 
explosion heard at those points at different times that the location of the 
explosion is 6 km closer to A than B. Show that the location of the explosion is 
restricted to a particular curve and find an equation of it. 
 
 
 
 
 
 

 
 

Fig. 4. 89 
Given : 
   PB − PA = 6 

  i.e.,    (x − 5)2 + y2 − (x + 5)2 + y2   = 6 

Simplifying we get − 9y2 + 16x2 = 144 

                 
− y2

16  + 
x2

9  = 1  i.e.,  
x2

9   −  
y2

16  =  1 which is a hyperbola. 

EXERCISE 4.3 
 (1) Find the equation of the hyperbola if  

  (i) focus : (2, 3) ; corresponding directrix : x + 2y = 5,  e = 2 

  (ii) centre : (0, 0) ; length of the semi-transverse axis is 5 ; e = 
7
5  and 

the conjugate axis is along x-axis. 

  (iii) centre : (0, 0) ; length of semi-transverse axis is 6 ; e = 3, and the 
transverse axis is parallel to y-axis. 

  (iv) centre : (1, − 2) ; length of the transverse axis is 8 ; e = 
5
4 and the 

transverse axis is parallel to x-axis. 

  (v) centre : (2, 5) ; the distance between the directrices is 15, the 
distance between the foci is 20 and the transverse axis is parallel to 
y-axis. 

A(-5, 0)
x

y

P(x,y)

B(5, 0)
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  (vi) foci : (0, ± 8) ; length of transverse axis is 12 

  (vii) foci : (± 3, 5) ; e = 3 
  (viii) centre : (1, 4) ; one of the foci (6, 4) and the corresponding 

directrix is x = 
9
4 . 

  (ix) foci : (6, − 1) and (− 4, − 1) and passing through the point (4, − 1) 
 (2) Find the equations and length of transverse and conjugate axes of the 

following hyperbolas : 

  (i) 144x2 − 25y2 = 3600 (ii) 8y2 − 2x2 = 16 

  (iii) 16x2 − 9y2 +96x + 36y − 36 = 0  
 (3) Find the equations of directrices, latus rectums and length of latus rectum 

of the following hyperbolas : 

  (i) 4x2 − 9y2 = 576 (ii) 9x2 − 4y2 − 36x + 32y + 8 = 0 
 (4) Show that the locus of a point which moves so that the difference of its 

distances from the points (5, 0) and (− 5, 0) is 8 is 9x2 − 16y2 = 144. 
 (5) Find the eccentricity, centre, foci and vertices of the following 

hyperbolas and draw their diagrams. 

  (i) 25x2 − 16y2 = 400 (ii) 
y2

9  − 
x2

25 = 1 

  (iii) x2 − 4y2 + 6x + 16y − 11 = 0 (iv) x2 − 3y2 + 6x + 6y + 18 = 0 

4.6 Parametric form of Conics: 

Conic Parametric 
equations 

Parameter Range of 
parameter 

Any point on 
the conic 

Parabola x = at2 

y = 2at 

t − ∞ < t < ∞ ‘t’ or  

(at2, 2at) 

Ellipse x = a cos θ 

y = b sin θ 

θ 0 ≤ θ ≤ 2π ‘θ’ or  

(a cosθ, b sinθ) 

Hyperbola x = a sec θ 

y = b tan θ 

θ 0≤ θ ≤ 2π ‘θ’  or 

(a sec θ, b tan θ) 

Note: For ellipse, we have another parametric form of equations  x  =  
a(1 − t2)

1 + t2
, 

y = 
b.2t

1 + t2
 , − ∞ < t <  ∞. This result will be obtained by putting tan 

θ
2  = t in the 

parametric equations x = a cosθ and y = b sin θ. 
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 Thus we have two forms of representations of conics i.e., cartesian form 

and parametric form. Now we will derive the equations of chord, tangent and 

normal to the conics. 

4.7 Chords, tangents and normals 
 We derive these equations using both forms of conics. 

4.7.1 Cartesian form 
(i) Parabola 
Equation of the chord joining A(x1, y1) and B(x2, y2) on the parabola  

y2 = 4ax 
 Since (x1, y1) and (x2, y2) lie on 

the parabola, 

  y1
2 = 4ax1, y2

2 = 4ax2 

  y1
2 − y2

2 = 4a (x1 − x2) 

 ⇒ 
y1 − y2

x1 − x2
 = 

4a
y1 + y2

 

 

 

 

 

 

 

Fig. 4. 90 

 i.e., the slope (m) of the chord AB  =  
4a

y1 + y2
 

 The equation of the chord, using slope (m) and point (x1, y1) is 

(y − y1)  =  
4a

y1 + y2
  (x − x1) 

 If the point (x2, y2) coincides with (x1, y1) then the chord becomes the 

tangent at (x1, y1). Therefore, to obtain tangent at (x1, y1), put x2 = x1 and  

y2 = y1 in the equation of the chord. ∴ the equation of the tangent is 

  (y − y1) = 
4a

y1 + y1
 (x − x1) 

 ⇒ yy1 = 2a(x + x1) 

(use y1
2 = 4ax1) 

 Thus the equation of the tangent 

at (x1, y1) to the parabola y2 = 4ax 
is yy1 = 2a(x + x1) 

 
 
 
 
 
 
 

Fig. 4. 91 

A(x1,y1)

B(x2,y2)

x

y

y2 = 4ax

A(x1,y1)

B(x2,y2)

x

y

y2 = 4ax

(x1,y1)

Ta
ng

en
t

x

y

y2 = 4ax

(x1,y1)

Ta
ng

en
t

x

y

y2 = 4ax
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     To find the equation of the normal using perpendicularity. 

 Equation of the tangent is 

  2ax  − y1y + 2ax1 = 0 

 ∴ the normal is of the form 

  y1x + 2ay = k 

 But it passes through (x1, y1) 

 ∴  k = x1y1 + 2ay1
 

 

 

 

 

 

Fig. 4. 92 

 Thus the equation of the normal at (x1, y1) to the parabola is  
y1x + 2ay  =  x1y1 + 2ay1 

(ii) Ellipse 

 Equation of the chord joining A(x1, y1) and B(x2, y2) on the ellipse  

x2

a2 + 
y2

b2 = 1 

 Since (x1, y1) and (x2, y2) lie on 

the ellipse,  

  
x1

2

a2  + 
y1

2

b2  = 1,  
x2

2

a2   + 
y2

2

b2   =  1 

 By simplification, the slope 

  m = 
y1 − y2

x1 − x2
 = 

− b2 (x1 + x2)

a2(y1 + y2)
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 ∴ the equation of the chord is   

 (y − y1)  =  
− b2 (x1 + x2)

a2(y1 + y2)
 (x − x1) 

 To get the equation of the tangent at (x1, y1) put x2 = x1 and y2 = y1 in the 

equation of the chord.  
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∴The equation of the tangent at  
(x1, y1) is  

          (y − y1) =  
− b2 (x1 + x1)

a2 (y1 + y1)
 (x − x1) 

⇒  
xx1

a2  + 
yy1

b2  = 1  

 
 
 
 
 
 
 

Fig. 4. 94 
 To get the equation of the normal, use the perpendicularity property to a 
straight line. 

  ∴The equation of the tangent is 

   x1b2x + y1a2y − a2b2 = 0 

∴The equation of the normal is of 

the form   y1a2x − x1b2y = k 

 But it passes through (x1, y1) 

  ∴ k = (a2 − b2) x1 y1
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 ∴ The required equation is  

  y1a2x − x1b2y = (a2 − b2) x1y1  or  
a2x
x1

 − 
b2y
y1

  =  a2 − b2 

(iii) Hyperbola 

 Following the same procedure as in the case of ellipse we get the equation 
of the chord as  

y − y1  =  
b2(x1 + x2)

a2(y1 + y2)
 (x − x1) 

 The equation of the tangent at (x1, y1) as   
xx1

a2   −  
yy1

b2   =  1 

 and the normal at (x1, y1) as  
a2x
x1

 + 
b2y
y1

 = a2 + b2 

 Note : To get the results for the hyperbola replace b2 as − b2 in the results 
of ellipse. 
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4.7.2 Parametric form : 

 To get the parametric forms of equations of chord, tangent and normal to 
conics, replace (x1, y1), by the corresponding ‘any point’ in the parametric form. 

(i) Parabola : 

 The equation of the chord joining (x1, y1) and (x2, y2) on the parabola is  

   y − y1 = 
4a

y1 + y2
  (x − x1) 

 ∴ The equation of the chord joining (at1
2, 2at1) and (at2

2, 2at2) or ‘t1’ and 
‘t2’ on the parabola is 

   y − 2at1 = 
4a

2at1 + 2at2
  (x − at1

2) 

                    i.e.    y(t1 + t2)  =  2x + 2a t1t2 

 To find the equation of the tangent at ‘t’ put t1 = t2 = t in the equation of 

the chord. We get 

   y(2t) = 2x + 2at2 

                            i.e.  yt = x + at2 

Another method: 

 The tangent at (x1, y1) to y2 = 4ax is yy1 = 2a(x + x1) 

 ∴ The tangent at (at2, 2at) is 

   y(2at) = 2a (x + at2) 

   i.e.,    yt = x + at2 

 Applying the perpendicularity, we get the equation of the normal at ‘t’ as  

y + tx = 2at + at3 

 Similarly we can derive the equation of chord, tangent and normal for 
ellipse and hyperbola. 
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Note : The equation of tangent at (x1, y1) is obtained from the equation of the 

curve  by replacing x2 by xx1, y2 by yy1, xy by 
1
2 (xy1 + x1y), x by 

1
2 (x + x1) and 

y by  
1
2 (y + y1) 

To find the condition that y = mx + c may be a tangent to the conics 

(1) Parabola : 

 Let y = mx + c be a tangent to the parabola y2 = 4ax at (x1, y1). 

 We know that at (x1, y1), the equation of the tangent is yy1 = 2a(x + x1) 

 ∴ The above two equations represent the same tangent and hence their 
corresponding coefficients are proportional 

   ∴  2ax − y1y + 2ax1 = 0 

   mx − y + c = 0 

 ⇒  
2a
m  = 

− y1

− 1
  =  

2ax1
c  

 ⇒  x1 = 
c
m  ,   y1 = 

2a
m   

 Since (x1, y1) lies on the parabola, y1
2 = 4ax1 , 

4a2

m2  = 4a . 
c
m 

   i.e.  ,  c = 
a
m 

 Thus we have three results to the parabola y2 = 4ax. 

 (1) The condition for the tangency is c = 
a
m 

 (2) The point of contact is 



c

m  ,  
2a
m   i.e.,  





a

m2 , 
2a
m  . 

 (3) The equation of any tangent is of the form y = mx + 
a
m 

Note : Instead of taking the equation of the tangent in the cartesian form, we 
can prove the same result by taking the tangent in the parametric form. 

 Similarly, we can derive the results for other conics also. 
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Results connected with ellipse : 

 (i) The condition that y = mx + c may be a tangent to the ellipse 
x2

a2  + 
y2

b2  = 1 

is c2 = a2m2 + b2 

 (ii) The point of contact is 



− a2m

c  , 
b2

c   where c2 = a2m2 + b2 

 (iii) The  equation of any tangent is of the form y = mx ± a2m2 + b2  

Note : In y = mx ± a2m2 + b2  ,  either y = mx + a2m2 + b2  holds 

    or y = mx − a2m2 + b2 holds 
Results connected with hyperbola : 
 (i) The condition that y = mx + c may be a tangent to the hyperbola is  

c2 = a2m2 − b2 

 (ii) The point of contact is 



− a2m

c  , 
− b2

c   where c2 = a2m2 − b2 

 (iii) The  equation of any tangent is of the form y = mx ± a2m2 − b2 

Note : In y = mx ± a2m2 − b2 ,  either y = mx + a2m2 − b2   

    or y = mx − a2m2 − b2 is correct but not both. 
4.7.3 Equation of chord of contact of tangents from a point (x1, y1)  

to the (i) Parabola y2 = 4ax  (ii) ellipse 
x2

a2 + 
y2

b2  = 1  (iii) hyperbola 
x2

a2 − 
y2

b2 = 1 

Solution : 
 The equation of tangent at  
 Q(x2, y2) is yy2 = 2a(x + x2) 

   It passes through the point  
P(x1, y1) 

 y1y2 = 2a (x1 + x2)           … (1) 

 The equation of tangent at  
R(x3, y3) is yy3 = 2a(x + x3) 
 It passes through the point 
P(x1, y1) 

∴  y1y3 = 2a(x1 + x3) … (2) 

 The result (1) and (2) show that 
Q(x2, y2) and R(x3, y3) lie on the 
straight line yy1 = 2a(x + x1). 
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∴ Equation of QR, the chord of contact of tangents is  yy1 = 2a(x + x1) 
 Similarly we can find the required equations of the chord of contact for 

ellipse as 
xx1

a2   +  
yy1

b2  = 1 and for the hyperbola as 
xx1

a2  − 
yy1

b2  = 1 

Example 4.59 : Find the equations of the tangents to the parabola y2 = 5x from 
the point (5, 13). Also find the points of contact. 
Solution: 

 The equation of the parabola is  y2 = 5x      Here  4a = 5    ⇒  a = 
5
4  

 Let the equation of the tangent be y = mx + 
a
m   i.e., y = mx + 

5
4m  … (1) 

 Since it passes through (5, 13) we have  

   13 = 5m + 
5

4m  

   ∴ 20m2 − 52m + 5 = 0 
   (10m − 1)  (2m − 5) = 0 

   ∴ m = 
1
10  or  m = 

5
2  

 Using the values of m, we get the equations of tangents are 2y = 5x + 1, 
10y = x + 125. 

 The points of contact are given by 




a

m2 , 
2a
m  ,  where a = 

5
4   m = 

5
2  ,  

1
10  

 ∴ the points of contact are 



1

5 , 1  , (125, 25) 

Example 4.60 : Find the equation of the tangent at t = 1 to the parabola  y2 = 12x 

Solution:  Equation of the parabola is y2 = 12x. 
 Here 4a = 12,   a = 3 

 ‘t’ represents the point (at2, 2at).  ∴ t = 1 represents the point = (3, 6) 

 Equation of tangent at (x1, y1) to the parabola y2 = 12x is yy1 = 12 
(x + x1)

2  

 ∴ Equation of tangent at (3, 6) is y(6) = 
12 (x + 3)

2      i.e., x − y + 3 = 0 

Alternative form : 

 The equation of the tangent at ‘t’ is yt = x + at2 

   Here        4a = 12    ⇒  a  =  3 
   Also           t = 1 
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 ∴ The equation of the tangent is  y = x + 3 

   x − y + 3 = 0 
Example 4.61 : Find the equation of the tangent and normal to the parabola  

x2 + x − 2y + 2 = 0 at (1, 2) 
Solution: 

 The equation of the parabola is x2 + x − 2y + 2 = 0 
 Equation of the tangent at (x1, y1) to the given parabola is 

 xx1 + 
x + x1

2   − 2 
(y + y1)

2   + 2 = 0 i.e., x(1) + 
x + 1

2  − 2 
(y + 2)

2  + 2 = 0 

 On simplification we get 3x − 2y + 1 = 0 
 Equation of the normal is of the form 2x + 3y + k = 0 
 This normal passes through (1, 2)    

   ∴  2 + 6 + k = 0    ∴   k = − 8 

 ∴ Equation of the normal is 2x + 3y − 8 = 0 
Example 4.62 : Find the equations of the two tangents that can be drawn from 

the point (5, 2) to the ellipse 2x2 + 7y2 = 14 
Solution: 
 Equation of the ellipse is 

   2x2 + 7y2 = 14 

   i.e.,    
x2

7  + 
y2

2   = 1 

 Here a2 = 7,   b2 = 2   

 Let the equation of the tangent be  y = mx + a2m2 + b2 

   ∴  y = mx + 7m2 + 2  
 Since this line passes through the point (5, 2) we get 

   2 = 5m + 7m2 + 2  

   i.e.    2 − 5m = 7m2 + 2 

   ∴  (2 − 5m)2 = 7m2 + 2 

   4 + 25m2 − 20m = 7m2 + 2 

   18m2 − 20m + 2 = 0 

   9m2 − 10m + 1 = 0 
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   ∴  (9m − 1)  (m − 1) = 0 

   ∴  m = 1    or  m = 
1
9  

 To find the equations of the tangents, use slope-point form  
 (i) m = 1,  

  The equation is y − 2 = 1(x − 5) i.e., x − y − 3 = 0   
 (ii) m = 1/9   

  The equation is  y − 2 = 
1
9 (x − 5), i.e., x − 9y + 13 = 0. 

 Thus the equations of the tangents are x − y − 3 = 0, x − 9y + 13 = 0 
Example 4.63 : Find the equation of chord of contact of tangents from the point 

(2, 4) to the ellipse 2x2 + 5y2 = 20 

Solution: 
 The equation of chord of contact of tangents  

 from (x1, y1) to 2x2 + 5y2 − 20 = 0 is 2xx1 + 5yy1 − 20 = 0 

 ∴ the required equation from (2, 4) is 2x(2) + 5y(4) − 20 = 0 

   i.e.  x + 5y − 5 = 0 

EXERCISE 4.4 
  (1) Find the equations of the tangent and normal  

  (i)  to the parabola y2 = 12x at (3, − 6) 

  (ii) to the parabola x2 = 9y at (− 3, 1) 

  (iii) to the parabola x2 + 2x − 4y + 4 = 0 at (0, 1)  

  (iv) to the ellipse 2x2 + 3y2 = 6 at ( )3 , 0  

  (v) to the hyperbola 9x2 − 5y2 = 31 at (2, − 1) 
 (2) Find the equations of the tangent and normal 

  (i) to the parabola y2 = 8x at t  = 
1
2  

  (ii) to the ellipse x2 + 4y2 = 32 at θ = 
π
4  

  (iii) to the ellipse 16x2 + 25y2 = 400 at t = 
1
3

  

  (iv) to the hyperbola 
x2

9   − 
y2

12  = 1 at θ = 
π
6  



 249

 (3) Find the equations of the tangents 

  (i) to the parabola y2 = 6x, parallel to 3x − 2y + 5 = 0 

  (ii) to the parabola y2 = 16x, perpendicular to the line 3x − y + 8 = 0 

  (iii) to the ellipse 
x2

20 + 
y2

5   = 1, which are perpendicular to x + y + 2 = 0 

  (iv) to the hyperbola 4x2 − y2 = 64, which are parallel to  
   10x − 3y + 9 = 0 
 (4) Find the equation of the two tangents that can be drawn 

  (i) from the point (2, − 3) to the parabola y2 = 4x 

  (ii) from the point (1, 3) to the ellipse 4x2 + 9y2 = 36 

  (iii) from the point (1, 2) to the hyperbola 2x2 − 3y2 = 6. 

 (5) Prove that the line 5x + 12y = 9 touches the hyperbola x2 − 9y2 = 9 and 
find its point of contact. 

 (6) Show that the line x − y + 4 = 0 is a tangent to the ellipse x2 + 3y2 = 12. 
Find the co-ordinates of the point of contact. 

 (7) Find  the equation to the chord of contact of tangents from the point 

  (i) (− 3, 1) to the parabola y2 = 8x 

  (ii) (2, 4) to the ellipse 2x2 + 5y2 = 20 

  (iii) (5, 3) to the hyperbola 4x2 − 6y2 = 24 
Results without Proof : 
 (1) Two tangents can be drawn to  (i) a parabola (ii) an ellipse and  

(iii)  a hyperbola,   from any point on the plane. 
 (2) (a) Three normals can be drawn to a parabola 
  (b) Four normals can be drawn to (i) an ellipse and (ii) a hyperbola from 

any point on the plane. 
 (3) The equation of chord of contact of tangents from a point (x1, y1) 

  (i) a parabola y2 = 4ax is yy1 = 2a(x + x1) 

  (ii) an ellipse 
x2

a2  +  
y2

b2  =  1 is 
xx1

a2   + 
yy1

b2  = 1 

  (iii) a hyperbola 
x2

a2  −  
y2

b2  =  1 is 
xx1

a2   − 
yy1

b2  = 1 

 (4) The chord of contact of tangents from any point on the directrix (i) of a 
parabola passes through its focus (ii) passes through the corresponding 
focus for ellipse and hyperbola 
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 (5) The condition that lx + my + n = 0 may be a tangent to  

  (i) the parabola y2 = 4ax is am2 = ln 

  (ii) the ellipse 
x2

a2 + 
y2

b2 = 1 is a2l2 + b2m2 = n2 

  (iii)  the hyperbola 
x2

a2 − 
y2

b2 = 1 is a2l2 − b2m2 = n2 

 (6) The condition that lx + my + n = 0 may be a normal to  

  (i) the parabola y2 = 4ax is al3 + 2alm2 + m2n = 0 

  (ii) the ellipse 
x2

a2 + 
y2

b2 = 1 is 
a2

l2
 + 

b2

m2 = 
(a2 − b2)

2

n2  

  (iii)  the hyperbola 
x2

a2 − 
y2

b2 = 1 is 
a2

l2
 − 

b2

m2 = 
(a2 + b2)

2

n2  

 (7) The locus of the foot of the perpendicular from a focus to a tangent to  

  (i)  the parabola y2 = 4ax is x =  0 

  (ii) the ellipse 
x2

a2 + 
y2

 b2 = 1 is the circle x2 + y2 = a2 

  (iii) the hyperbola 
x2

a2 − 
y2

 b2 = 1 is the circle x2 + y2 = a2 

  (This circle is also called auxiliary circle) 
 (8) The locus of the point of intersection of perpendicular tangents to  

  (i) the parabola y2 = 4ax is x = − a (the directrx) 

  (ii) the ellipse 
x2

a2 + 
y2

b2 = 1 is x2 + y2 = a2 + b2 (This circle is called 

director circle) 

  (iii) an hyperbola 
x2

a2 − 
y2

b2  = 1 is x2 + y2 = a2 − b2 (This circle is also 

called director circle) 
 (9) The point of intersection of the tangents at ‘t1’ and ‘t2’ to the 

parabola y2 = 4ax is [at1t2, a(t1 + t2)] 

 (10) The normal at the point ‘t1’ on the parabola y2 = 4ax meets the parabola 

again at the point ‘t2’, then  t2 = − 




t1 + 

2
t1
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 (11) If ‘t1’ and ‘t2’ are the extremities of any focal chord of the parabola  

y2 = 4ax, then t1t2 = − 1 

Note :  For the proof of above results one may refer the Solution Book. 

4.8. Asymptotes 
 Consider the graph of a function y = f(x). As a point P on the curve moves 
farther and farther away from the origin, it may happen that the distance 
between P and some fixed line tends to zero. This fixed line is called an 
asymptote. 
  Note that it is possible only when the curve is open. Since hyperbola is 
open and  y → ± ∞ as x → + ∞ and x → − ∞ hyperbola have asymptotes. 
Definition : 
 An asymptote to a curve is the tangent to the curve such that the point of 
contact is at infinity. In particular the asymptote touches the curve at  
+ ∞ and − ∞. 
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The equations of the asymptotes to the hyperbola 
x2

a2 − 
y2

b2 = 1 

 Assume that the equation of an asymptote is of the form y = mx + c. 
 To find the points of intersection of the hyperbola and the asymptote, solve 

x2

a2  −  
y2

b2  =  1 and y = mx + c. 

 ∴  
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1

a2 − 
m2

b2  x2 − 
2mc

b2  x − 






c2

b2 + 1  = 0 

 The points of contact are at infinity. i.e., the roots of the equations are 

infinite. Since the roots are infinite, the coefficients of x2 and x must be zero. 

   ∴ 
1

a2  −  
m2

b2  = 0   and 
− 2mc

b2  = 0 

   i.e.,   m = ± 
b
a  and  c = 0 

   Then     y = ± 
b
a x 

 ∴ there are two asymptotes to the hyperbola whose equations are 

   y = 
b
a x   and y = 

− b
a  x 

 i.e. 
x
a  − 

y
b  = 0 and 

x
a  +  

y
b  = 0 

 The combined equation of asymptotes is  

 



x

a − 
y
b   



x

a + 
y
b   = 0   i.e.     

x2

a2  −  
y2

b2 = 0 
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Results regarding asymptotes : 
  (1) The asymptotes pass through the centre C(0, 0) of the hyperbola. 
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 (2) The slopes of asymptotes are 
b
a  and − 

b
a   i.e., the transverse axis and 

conjugate axis bisect angles between the asymptotes. 

 (3) If 2α is the angle between the asymptotes then the slope of 
x
a  −  

y
b = 0 is 

tan α = 
b
a . 

  ∴ angle between the asymptotes is 2α = 2 tan−1 
b
a 

 (4) We know that sec2α = 1 + tan2α 

    sec2α = 1 + 
b2

a2  =  
a2 + b2

a2   =  e2 

    ⇒  sec α = e   ⇒  α  =  sec−1e 

  ∴ angle between the asymptotes 2α = 2 sec−1e 
Important Note : 
  Eventhough the asymptotes are straight lines, if the angle between the 

asymptotes is obtuse, take obtuse angle as the angle between them and 
not the corresponding acute angle. 

 (5) The standard equation of hyperbola and combined equation of 
asymptotes differs only by a constant. 

 (6) If l1 = 0 and l2 = 0 are the separate equations of asymptotes, then the 
combined equation of the asymptotes is l1 l2 = 0. 

  ∴ the equation of the corresponding hyperbola is of the form l1l2 = k, 

where k is a constant. To find this k, we need a point on the hyperbola. 

Example 4.64 : Find the separate equations of the asymptotes of the hyperbola 

3x2 − 5xy − 2y2 + 17x + y + 14 = 0 
Solution: The combined equation of the asymptotes differs from the hyperbola 
by a constant only. 
 ∴ the combined equation of the asymptotes is 

  3x2 − 5xy − 2y2 + 17x + y + k = 0 

   Consider   3x2 − 5xy − 2y2 = 3x2 − 6xy + xy − 2y2 

    = 3x (x − 2y) + y(x − 2y) 

    = (3x + y) (x − 2y) 

 ∴ The separate equations are 3x + y + l = 0,    x − 2y + m =  0 
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   ∴   (3x + y + l)  (x − 2y + m) = 3x2 − 5xy − 2y2 + 17x + y + k 
 Equating the coefficients of x, y terms and constant term, we get 

   l + 3m = 17 … (1) 

   − 2l + m = 1 …(2) 

   l m = k 

 Solving (1) and (2) we get  l = 2,  m = 5  and k = 10 

 Hence separate equations of asymptotes are 3x  + y + 2 = 0,  x − 2y + 5 = 0 

 The combined equation of asymptotes is  

  3x2 − 5xy − 2y2 + 17x + y + 10 = 0 

Note : The hyperbola, discussed above is not a standard hyperbola. 

Example 4.65 : Find the equation of the hyperbola which passes through the 
point (2, 3) and has the asymptotes 4x + 3y − 7 = 0 and x − 2y = 1. 

Solution: 
      The separate equations of the asymptotes are 4x + 3y − 7 = 0, x − 2y − 1 = 0  

 ∴ combined equation of asymptotes is (4x + 3y − 7) (x − 2y − 1) = 0 
 The equation of the hyperbola differs from this combined equation of 
asymptotes by a constant only. 
 ∴  the equation of the hyperbola is of the form  
   (4x + 3y − 7) (x − 2y − 1) + k = 0 
 But this passes through (2, 3) 
   (8 + 9 − 7) (2 − 6 − 1) + k = 0     ∴  k = 50 
 ∴ The equation of the corresponding hyperbola is 
   (4x + 3y − 7) (x − 2y − 1) + 50 = 0 

 i.e.,  4x2 − 5xy − 6y2 − 11x + 11y + 57 = 0 

Example 4.66 : Find the angle between the asymptotes of the hyperbola 

3x2 − y2 − 12x − 6y − 9 = 0 

Solution: 3x2 − y2 − 12x − 6y − 9 = 0 

   3(x2 − 4x) − (y2 + 6y) = 9 

   3 {(x − 2)2 − 4} − {(y + 3)2 − 9} = 9 

   3(x − 2)2 − (y + 3)2 = 12 

   
(x − 2)2

4   −  
(y + 3)2

12  = 1 

 Here a = 2,  b = 12  = 2 3 
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 The angle between the asymptotes is  

 2α = 2 tan−1  
b
a  =  2tan−1 

2 3
2   = 2 tan−1 3 = 2 × 

π
3  = 

2π
3   

Another method :   a2 = 4,   b2 = 12 

   e = 1 + 
b2

a2  = 1 + 
12
4   =  2 

 The angle between the asymptotes is 

   2 α  =  2 sec−12 = 2 × 
π
3   =  

2π
3   

Example 4.67 : Find the angle between the asymptotes to the hyperbola 

3x2 − 5xy − 2y2 + 17x + y + 14 = 0 
Solution: Combined equation of the asymptotes differs from that of the 
hyperbola by a constant only. 
 ∴ Combined equation of asymptotes is 3x2 − 5xy − 2y2 + 17x + y + k = 0 

   3x2 − 5xy − 2y2 = 3x2 − 6xy + xy − 2y2 
    = 3x(x − 2y) + y(x − 2y) 
    = (x − 2y) (3x + y) 
 ∴ Separate equations are x − 2y + l = 0,  3x + y + m = 0 

 Let m1 and m2 be the slopes of these lines, then m1 = 
1
2  , m2 = − 3 

 ∴ angle between the lines is  tanθ = 






m1 − m2

1 + m1m2
 = 



1/2 − (− 3)

1 + 1/2 (− 3)
 = 7 

   θ = tan−1 (7) 
Alternative method : Combined equation of asymptotes is nothing but pair of 
straight lines. Hence the angle between the asymptotes is  

   tan θ = 





2 h2 − ab

a + b    

 Comparing with ax2 + 2hxy + by2 + 2gx + 2fy + c = 0 
 We have a = 3,  b = − 2,  2h = − 5 

   tan θ = 









2
25
4  + 6

3 − 2
 

   = 



2 × 7

2   = 7 

   θ = tan−1 (7) 
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Note : Since the above hyperbola is not in the standard form, it is difficult to 
identify whether the angle between the asymptotes is obtuse or acute. 
According to the above method we will get only the acute angle as the angle 
between the asymptotes. 

 Therefore if the hyperbola in the standard form, use either 2 tan−1 
b
a   or  

2 sec−1e to find the angle between the asymptotes and take the angle as it is. 
Example 4.68 : Prove that the product of perpendiculars from any point on the 

hyperbola  
x2

a2 − 
y2

b2 = 1   to its asymptotes is constant and the value is 
a2b2

a2 + b2  

Solution: 

 Let P (x1, y1) be any point on the hyperbola 
x2

a2  − 
y2

b2 = 1∴ 
x1

2

a2  − 
y1

2

b2  = 1  … (1) 

 The perpendicular distance from (x1, y1) to the asymptote  

 
x
a − 

y
b  = 0 is 

x1
a  − 

y1
b

1

a2 + 
1

b2

 and to 
x
a + 

y
b = 0 is  

x1
a  + 

y1
b

1

a2 + 
1

b2

   

 
 
 
 
 
 
 
 
 
 

Fig. 4. 99 

 ∴ Product of perpendicular distances = 

x1
a  + 

y1
b

1

a2 + 
1

b2

 . 

x1
a  − 

y1
b

1

a2 + 
1

b2

 

F2 F1
A′ AC

y

x/a
 - y/b

=0

P(x1,y1)

x/a + y/b=0

x
F2 F1

A′ AC

y

x/a
 - y/b

=0

P(x1,y1)

x/a + y/b=0

x
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    = 

x1
2

a2  − 
y1

2

b2

1

a2 + 
1

b2

  =  
1

b2 + a2

a2 b2

    (by (1)) 

    = 
a2 b2

a2 + b2 ,  which is a constant. 

EXERCISE 4.5 
  (1) Find the equation of the asymptotes to the hyperbola 

  (i) 36x2 − 25y2 = 900 (ii) 8x2 + 10xy − 3y2 − 2x + 4y − 2 = 0 
 (2) Find the equation of the hyperbola if  
  (i) the asymptotes are 2x + 3y − 8 = 0 and 3x − 2y + 1 = 0 and (5, 3) is a 

point on the hyperbola 
  (ii) its asymptotes are parallel to x + 2y − 12 = 0 and x − 2y + 8 = 0,  

(2, 4) is the centre of the hyperbola and it passes through (2, 0). 
 (3) Find the angle between the asymptotes of the hyperbola 

  (i) 24x2 − 8y2 = 27  (ii) 9(x − 2)2 − 4(y + 3)2 = 36 

  (iii) 4x2 − 5y2 − 16x + 10y + 31 = 0 
4.9 Rectangular hyperbola 
Definition: 
 A hyperbola is said to be a rectangular hyperbola if its asymptotes are at 
right angles. 

 The angle between the asymptotes is given by 2tan−1 
b
a . But angle between 

the asymptotes of the rectangular hyperbola is 90° .   

 ∴ 2tan−1 



b

a  = 90° ∴  
b
a = tan45°   ⇒  a = b. 

 Using a = b in the hyperbola 
x2

a2  − 
y2

b2 = 1, we get the equation of 

rectangular hyperbola as x2 − y2 = a2. Hence the combined equation of the 

asymptotes is x2 − y2 = 0. The separate equations are x − y = 0 and x + y = 0. 
i.e., x = y and x = − y. The transverse axis is y = 0, conjugate axis is x = 0. 

 All the results corresponding to the rectangular hyperbola of the form  

x2 − y2 = a2 are obtained simply by putting a = b in the corresponding results of 

the hyperbola 
x2

a2  −  
y2

b2 = 1 
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 This type of rectangular hyperbola is not a standard one. For standard type, 
the asymptotes are the co-ordinate axes. 

 The standard rectangular hyperbola xy = c2 is obtained by rotating the 

rectangular hyperbola x2 − y2 = a2 through an angle 45° about the origin in the 
anticlockwise direction. 

 

 
 
 
 
 
 
 

Fig. 4. 100 
4.9.1 Standard equation of a rectangular hyperbola : 
 For a standard rectangular hyperbola the asymptotes are co-ordinate axes. 
Since the axes are the asymptotes, the equations of the asymptotes are x = 0 and 
y = 0. The combined equation of the asymptotes is xy = 0. Therefore the 
equation of the standard rectangular hyperbola is of the form xy = k. To find k, 
we need a point on the rectangular hyperbola. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4. 101 
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 Let the asymptotes meet at C. Let AA′ = 2a be the length of the transverse 
axis. Draw AM perpendicular to x-axis. Since the asymptotes bisect the angle 

between the axes, ACM  = 45°.  CM = a cos 45° = 
a
2

  , AM = a sin 45° = 
a
2

  

 ∴ co-ordinates of A are 




a

2
 , 

a
2

 . This point lies on the rectangular 

hyperbola xy = k. ∴ k =  
a
2

  . 
a
2

  or k = 
a2

2  and 

 the equation of the rectangular hyperbola is xy = 
a2

2  or  

                   xy = c2      where c2 = 
a2

2  . 

 Eccentricity of the hyperbola is given by b2 = a2(e2 − 1). Since a = b in a 

rectangular hyperbola, a2 = a2 (e2 − 1)   
 Eccentricity of the rectangular hyperbola is e = 2 . 

 Also the vertices of the rectangular hyperbola are 




a

2
, 

a
2

 ,  




− 

a
2

, − 
a
2

 

and foci are (a, a), (− a, − a). 
 The equation of transverse axis is y = x and the conjugate axis is y = − x. 
 If the centre of the rectangular hyperbola is at (h, k) and the asymptotes are 
parallel to x and y-axis, the general form of standard rectangular hyperbola is  (x 

− h) (y − k) = c2. 

 The parametric equation of the rectangular hyperbola xy = c2 are  

 x = ct, y = 
c
t   where ‘t’ is the parameter and ‘t’ is any non-zero real number. 

 Any point on the rectangular hyperbola is 



ct  ,  

c
t  . This point is often 

referred to as the point ‘t’. 
Results : 

  Equation of the tangent at (x1, y1) to the rectangular hyperbola xy = c2 

is xy1 + yx1 = 2c2 

  Equation of the tangent at ‘t’ is x + yt2 = 2ct. 

  Equation of normal at (x1, y1) is xx1 − yy1 = x1
2 − y1

2 . 
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  Equation of normal at ‘t’ is y − xt2 = 
c
t   − ct3 

  Two tangents and four normals can be drawn from a point to a 
rectangular hyperbola. 

Example 4.69 : Find the equation of the standard rectangular hyperbola whose 

centre is 



− 2 , 

− 3
2  and which passes through the point 



1,  

− 2
3   

Solution: 
 The equation of the standard rectangular hyperbola with centre at (h, k) is 

(x − h) (y − k) = c2 

 The centre is 



− 2  , 

− 3
2  . 

 ∴ the equation of the standard rectangular hyperbola is (x+2) 



y + 

3
2  = c2 

 It passes through 



1  ,  

− 2
3    ∴  (1 + 2) 



− 2

3  + 
3
2  = c2  ⇒   c2 = 

5
2    

 Hence the required equation is (x + 2) 



y + 

3
2  = 

5
2  or  

 2xy + 3x + 4y + 1 = 0 

Example 4.70 : The tangent at any point of the rectangular hyperbola xy = c2 
makes intercepts a, b and the normal at the point makes intercepts p, q on the 
axes. Prove that ap + bq = 0 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4. 102 
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Solution:  Equation of tangent at any point ‘t’ on xy = c2 is x + yt2 = 2ct 

 or   
x

2ct  +  
y

2c/t  = 1 

 ∴ Intercept on the axes are a = 2ct, b = 
2c
t  .  

 Equation of normal at ‘t’ on xy = c2 is y − xt2 = 
c
t  − ct3 

   
x









c

t  − ct3

−t2

 + 
y





c

t  − ct3
 = 1 

 ∴ intercept on axes are  p = 
− 1

t2
  



c

t  − ct3  ,     q = 
c
t  − ct3 

   ∴  ap + bq = 2ct 




− 1

t2
  



c

t  − ct3  + 
2c
t   



c

t  − ct3  

    = − 
2c
t  



c

t  − ct3  + 
2c
t   



c

t  − ct3  

    = 0 
Example 4.71 : Show that the tangent to a rectangular hyperbola terminated by 
its asymptotes is bisected at the point of contact.  
Solution: 
 The equation of tangent at  

P 



ct, 

c
t  is x + yt2 = 2ct 

 Putting y = 0 in this equation 
we get the co-ordinates of A as 
(2ct, 0). Putting x = 0 we get 

the co-ordinates of B as 



0, 

2c
t

 

 
 
 
 
 
 
 
 

Fig. 4. 103 

 The mid-point of AB is 



2ct + 0

2  , 
0 + 

2c
t

2   = 



ct , 

c
t  

which is the point P. This shows that the tangent is bisected at the point of 
contact.  

A
x

y

B

P(ct, c/t)

O
A

x

y

B

P(ct, c/t)

O
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EXERCISE 4.6 
 (1) Find the equation of the standard rectangular hyperbola whose centre is 





− 

1
2 , − 

1
2   and which passes through the point 



1 , 

1
4  . 

 (2) Find the equation of the tangent and normal (i) at (3, 4) to the rectangular 

hyperbolas xy = 12   (ii) at 



− 2 , 

1
4   to the rectangular hyperbola  

2xy − 2x − 8y − 1 = 0 

 (3) Find the equation of the rectangular hyperbola which has for one of its 
asymptotes the line x + 2y − 5 = 0 and passes through the points (6, 0) 
and (− 3, 0). 

 (4) A standard rectangular hyperbola has its vertices at (5, 7) and (− 3, −1). 
Find its equation and asymptotes. 

 (5) Find the equation of the rectangular hyperbola which has its centre at  
(2, 1), one of its asymptotes 3x − y − 5 = 0 and which passes through the 
point (1, − 1). 

 (6) Find the equations of the asymptotes of the following rectangular 
hyperbolas. 

  (i) xy − kx − hy = 0              (ii) 2xy + 3x + 4y +1 = 0     

  (iii) 6x2 + 5xy − 6y2 + 12x + 5y + 3 = 0 

 (7) Prove that the tangent at any point to the rectangular hyperbola forms 
with the asymptotes a triangle of constant area. 

Results without proof : 

 (1) The foot of the perpendicular from a focus of a hyperbola on an 
asymptote lies on the corresponding directrix. 

 (2) (i) Two tangents (ii) four normals can be drawn from a point to the 

rectangular hyperbola xy = c2. 
 (3) The condition that the line lx + my + n = 0 may be a tangent to the 

rectangular hyperbola xy = c2 is 4c2lm = n2 

 (4) If the normal to the rectangular hyperbola xy = c2 at ‘t1’ meets the 

curve again at ‘t2’ prove that t1
3 t2 = − 1. 

Note :  For the proof of above results one may refer the Solution Book. 
 

 



  

 Now, we summarise the results of the four standard types of parabolas. 

Type Equation Diagram Focus Equation of 
Directrix Axis Vertex Equation of 

Latus Rectum 
Length of 

Latus Rectum 
 
 
Open rightwards 

 
 
y2 = 4ax 

 
 
 
 
 

 
 
(a, 0) 

 
 
x  = − a 

 
 

y = 0 

 
 
(0, 0) 

 
 

x = a 

 
 
4a 

 
 
Open leftwards 

 
 
y2 = − 4ax 

 
 
 
 

 
 
(− a, 0) 

 
 

x = a 

 
 

y = 0 

 
 
(0, 0) 

 
 

x = − a 

 
 
4a 

 
 
Open upwards 

 
 
x2 =  4ay 

 
 
 
 
 

 
 
(0, a) 

 
 

y  = − a 

 
 

x = 0 

 
 
(0, 0) 

 
 

y = a 

 
 
4a 

 
 
Open downwards 

 
 
x2 =  − 4ay 

 
 
 
 
 

 
 
(0, − a) 

 
 

y = a 

 
 

x = 0 

 
 
(0, 0) 

 
 

y = − a 

 
 
4a 

177 

y

x

 

y

x
 

y

x
 

x

y

 



  

Thus we get the following : 
Cartesian form : Parabola Ellipse Hyperbola 
Equation of chord joining 
(x1, y1) and (x2, y2) 

y − y1 = 
4a

y1 + y2
  (x − x1) y − y1 = −  

b2(x1+x2)

a2(y1+y2)
 (x − x1) y − y1 = 

b2(x1+x2)

a2(y1+y2)
 (x − x1) 

Equation of tangent at (x1, y1) yy1 = 2a(x + x1) xx1 / a2 + yy1/b2  = 1 xx1 / a2 − yy1/b2  = 1 

Equation of normal at (x1, y1) xy1 + 2ay = x1y1 + 2ay1 a2x
x1

 −  
b2y
y1

 = a2 − b2 
a2x
x1

 +  
b2y
y1

 = a2 + b2 

Parametric form : Parabola Ellipse Hyperbola 
Equation of chord  Chord joining the 

points ‘t1’ and ‘t2’ is 
y(t1 + t2) = 2x + 2at1t2 

Chord joning the points ‘θ’1 and ‘θ’2 is 

x
a cos 

(θ1 + θ2)
2   + 

y
b  sin 

(θ1 + θ2)
2   = cos 

(θ1 − θ2)
2    

Chord joning the points ‘θ’1 and ‘θ’2 is 

x
a cos 

(θ1 − θ2)
2   −  

y
b  sin 

(θ1 + θ2)
2    = cos 

(θ1 + θ2)
2    

Equation of tangent  at ‘t’ is  yt = x + at2 at ‘θ’ is  
x
a   cos θ + 

y
b   sin θ = 1 at ‘θ’ is   

x
a sec θ − 

y
b  tan θ = 1 

Equation of normal at ‘t’ is 

tx + y = 2at + at3 

ax
cosθ − 

by
sinθ  = a2 − b2 

ax
secθ + 

by
tanθ  = a2 + b2 

243 
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OBJECTIVE TYPE QUESTIONS 
Choose the correct or most suitable answer : 

 (1) The rank of the matrix 







1   − 1 2

2   − 2    4

4   − 4   8 

 is 

  (1) 1 (2) 2 (3) 3 (4) 4 
 
 (2) The rank of the diagonal 

matrix  

 
  (1) 0 (2) 2 (3) 3 (4) 5 

 (3) If A = [2  0  1], then rank of AAT is  
  (1) 1 (2) 2 (3) 3 (4) 0 

 (4) If A = 








1

2

3
, then the rank of AAT is 

  (1) 3 (2) 0 (3) 1 (4) 2 

 (5) If the rank of the matrix 







λ    − 1    0

0    λ    − 1

− 1    0    λ 

 is 2, then λ is 

  (1) 1 (2) 2 (3) 3 (4) any real number 

 (6) If A is a scalar matrix with scalar k ≠ 0, of order 3, then A−1 is 

  (1) 
1

k2 I (2) 
1

k3 I (3) 
1
k I (4) kI 

 (7) If the matrix 







− 1   3    2

1    k   − 3

1    4    5 

 has an inverse  then the values of k 

  (1) k is any real number     (2) k = − 4    (3) k ≠ − 4    (4) k ≠ 4 

 (8) If A = 



2  1

3  4
, then (adj A) A =  

  (1) 







1

5   0

0   
1
5

 (2) 



1  0

0  1
  (3) 







5    0

0   − 5
 (4) 



5   0

0   5
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 (9) If A is a square matrix of order n then | adj A | is 

  (1) | A |2 (2) | A |n (3) | A |n − 1 (4) | A | 

 (10) The inverse of the matrix 









0   0   1

0   1   0

1   0   0

 is 

  (1) 









1   0   0

0   1   0

0   0   1

   (2) 









0    0   1

0    1   0

−1   0   0

   (3) 









0   0   1

0   1   0

1   0   0

   (4) 







− 1    0    0

0    − 1   0

0    0    1

 

 (11) If A is a matrix of order 3, then det (kA)  

  (1) k3det (A) (2) k2 det(A) (3) k det (A)  (4) det (A) 
 (12) If I is the unit matrix of order n, where k ≠ 0 is a constant, then  

adj(kI) = 

  (1) kn (adj I) (2) k (adj I) (3) k2 (adj (I))    (4) kn − 1 (adj I) 
 (13) If A and B are any two matrices such that AB = O and A is non-singular, 

then 
  (1) B = O       (2) B is singular (3) B is non-singular    (4) B = A 

 (14) If A = 



0   0

0   5
, then A12 is 

  (1) 



0    0

0   60
 (2) 







0    0

0   512  (3) 



0   0

0   0
 (4) 



1    0

0    1
 

 (15) Inverse of 



3   1

5   2
 is 

  (1) 






2    − 1

− 5    3
 (2) 







− 2    5

1    − 3
 (3) 







3    − 1

− 5   − 3
 (4) 







− 3    5

1    − 2
 

 (16) In a system of 3 linear non-homogeneous equation with three 
unknowns, if ∆ = 0 and ∆x = 0, ∆y ≠ 0 and ∆z = 0 then the system has 

  (1) unique solution  (2) two solutions 
  (3) infinitely many solutions (4) no solutions 
 (17) The system of equations ax + y + z = 0  ; x + by + z = 0  ;  x + y + cz = 0 

has a non-trivial solution then  
1

1 − a
 + 

1
1 − b

 + 
1

1 − c
 =  

  (1) 1 (2) 2 (3) − 1 (4) 0 
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 (18) If aex + bey = c  ;  pex + qey = d and ∆1 = 



a   b

p   q
 ;  ∆2 = 



c   b

d   q
 ,     

∆3 = 



a   c

p   d
  then the value of (x, y) is 

  (1) 






∆2

∆1
,  
∆3

∆1
  (2) 









log 
∆2

∆1
,  log 

∆3

∆1
  

  (3) 








log 
∆1

∆3
 ,  log 

∆1

∆2
 (4) 









log 
∆1

∆2
 ,  log 

∆1

∆3
 

 (19) If the equation  − 2x + y + z = l 
    x − 2y + z = m 
    x + y − 2z = n 
  such that l + m + n = 0, then the system has 
  (1) a non-zero unique solution (2) trivial solution 
  (3) Infinitely many solution (4) No Solution 

 (20) If a
→

 is a non-zero vector and m is a non-zero scalar then m a
→

 is a unit 
vector if 

  (1) m = ± 1 (2) a = | m | (3) a = 
1

| m |  (4) a = 1 

 (21) If a
→

 and b
→

 are two unit vectors and θ is the angle between them, then 

( )a
→

 + b
→

 is a unit vector if 

  (1) θ = 
π
3 (2) θ = 

π
4 (3) θ = 

π
2 (4) θ = 

2π
3  

 (22) If a
→

 and b
→

 include an angle 120° and their magnitude are 2 and 3  

then a
→

 . b
→

 is equal to 

  (1) 3 (2) − 3 (3) 2 (4) − 
3

2  

 (23) If u
→

 = a
→

 × ( )b
→

 × c
→

 + b
→

 × ( )c
→

 × a
→

 + c
→

 × ( )a
→

 × b
→

, then 

  (1) u is a unit vector (2) u
→

 = a
→

 + b
→

 + c
→

 

  (3) u
→

 = 0
→

  (4) u
→

 ≠ 0
→
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 (24) If a
→

 + b
→

 + c
→

 = 0,  | |a
→

 = 3,   | |b
→

 = 4, | |c
→

 = 5 then the angle 

between a
→

 and b
→

 is 

  (1) 
π
6 (2) 

2π
3  (3) 

5π
3  (4) 

π
2 

 (25) The vectors 2 i
→

 + 3 j
→

 + 4 k
→

 and a i
→

 + b j
→

 + c k
→

 are perpendicular 
when 

  (1) a = 2,  b = 3,  c = − 4 (2) a = 4,  b = 4,  c = 5 
  (3) a = 4,  b = 4,  c = − 5 (4) a = − 2,  b = 3,  c = 4 

 (26) The area of the parallelogram having a diagonal 3 i
→

 + j
→

 − k
→

 and a 

side i
→

 − 3 j
→

 + 4 k
→

 is 

  (1) 10 3 (2) 6 30 (3) 
3
2 30 (4) 3 30 

 (27)  If | |a
→

 + b
→

 = | |a
→

 − b
→

 then 

  (1) a
→

 is parallel to b
→

  

  (2) a
→

 is perpendicular to b
→

  

  (3) | |a
→

  = | |b
→

 

  (4) a
→

 and b
→

 are unit vectors 

 (28) If p
→

, q
→

 and p
→

 + q
→

 are vectors of magnitude λ then the magnitude of 

| |p
→

 − q
→

 is 

  (1) 2λ (2) 3λ (3) 2λ (4) 1 

 (29) If a
→

 × ( )b
→

 × c
→

 + b
→

 × ( )c
→

 × a
→

 + c
→

 × ( )a
→

 × b
→

= x
→
× y
→

 then 

  (1) x
→

 = 0
→

          (2) y
→

 = 0
→

 

  (3) x
→

 and y
→

 are parallel (4) x
→

 = 0
→

 or y
→

= 0
→

 or x
→

 and y
→

 are parallel 

 (30) If PR
→

 = 2 i
→

 + j
→

 + k
→

,  QS
→

 = − i
→

 + 3 j
→

 + 2 k
→

  then the area of the 
quadrilateral PQRS is 

  (1) 5 3 (2) 10 3 (3) 
5 3

2  (4) 
3
2 
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 (31) The projection of OP
→

 on a unit vector OQ
→

 equals thrice the area of 

parallelogram OPRQ. Then POQ  is 

  (1) tan−1 
1
3 (2) cos−1 



3

10  (3) sin−1 




3

10
 (4) sin−1 



1

3  

 (32) If the projection of a
→

 on b
→

 and projection of b
→

 on  a
→

 are equal then 

the angle between a
→

 + b
→

 and a
→

 − b
→

 is 

  (1) 
π
2 (2) 

π
3 (3) 

π
4 (4) 

2π
3  

 (33) If a
→

 × ( )b
→

 × c
→

 = ( )a
→

 × b
→

 × c
→  for non-coplanar vectors a

→
, b
→

, 

c
→

 then 

  (1) a
→

 parallel to b
→

         (2) b
→

 parallel to c
→

 

  (3) c
→

 parallel to a
→

         (4) a
→

 + b
→

 + c
→

 = 0
→

 

 (34) If a line makes 45°, 60° with positive direction of axes x and y then the 
angle it makes with the z axis is 

  (1) 30° (2) 90′ (3) 45° (4) 60° 

 (35) If [ ]a
→

 × b
→
,  b
→

 × c
→
,   c
→

 × a
→

  = 64 then [ ]a
→
,  b
→
,  c
→

 is 

  (1) 32 (2) 8 (3) 128 (4) 0 

 (36) If [ ]a
→

 + b
→
,  b
→

 + c
→
,   c
→

 + a
→

  = 8 then [ ]a
→
,  b
→
,  c
→

 is 

  (1) 4  (2) 16 (3) 32 (4) − 4 

 (37) The value of [ ]i
→

 + j
→
,  j
→

 + k
→
,   k
→

 + i
→

  is equal to 

  (1) 0  (2) 1 (3) 2 (4) 4 

 (38) The shortest distance of the point (2, 10, 1) from the plane 

   r
→

 . ( )3 i
→

 − j
→

 + 4 k
→

 = 2 26 is  

  (1) 2 26 (2) 26 (3) 2 (4) 
1
26
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 (39) The vector ( )a
→

 × b
→

 × ( )c
→

 × d
→

 is 

  (1) perpendicular to a
→

, b
→

, c
→

 and d
→

 

  (2) parallel to the vectors ( )a
→

 × b
→

 and ( )c
→

 × d
→

 

  (3) parallel to the line of intersection of the plane containing a
→

 and b
→

 

and the plane containing c
→

 and d
→

 

  (4) perpendicular to the line of intersection of the plane containing a
→

 

and b
→

 and the plane containing c
→

 and d
→

 

 (40) If  a
→

, b
→

, c
→

 are a right handed triad of mutually perpendicular vectors 

of magnitude a, b, c then the value of [ ]a
→

  b
→

  c
→

 is 

  (1) a2 b2 c2 (2) 0 (3) 
1
2 abc (4) abc 

 (41) If a
→

, b
→

, c
→

 are non-coplanar and  

  [ ]a
→

 × b
→
,  b
→

 × c
→
,   c
→

 × a
→

  = [ ]a
→

 + b
→
,  b
→

 + c
→
,   c
→

 + a
→

  then 

[ ]a
→
,  b
→
,  c
→

 is 

  (1) 2 (2) 3 (3) 1 (4) 0 

 (42) r
→

 = s i
→

 + t j
→

 is the equation of 

  (1) a straight line joining the points i
→

 and j
→

 

  (2) xoy plane (3) yoz plane (4) zox plane 

 (43) If the magnitude of moment about the point j
→

 + k
→

 of a force  

  i
→

 + a j
→

 − k
→

 acting through the point i
→

 + j
→

 is 8 then the value of a 
is 

  (1) 1 (2) 2 (3) 3 (4) 4 
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 (44) The equation of the line parallel to 
x − 3

1  = 
y + 3

5  = 
2z − 5

3  and passing  

through the point (1, 3, 5) in vector form is 

  (1) r
→

 = ( )i
→

 + 5 j
→

 + 3 k
→

 + t( )i
→

 + 3 j
→

 + 5 k
→

 

  (2) r
→

 = i
→

 + 3 j
→

 + 5 k
→

 + t( )i
→

 + 5 j
→

 + 3 k
→

 

  (3) r
→

 = 



i

→
 + 5 j

→
 + 

3
2 k
→

 + t( )i
→

 + 3 j
→

 + 5 k
→

 

  (4) r
→

 = i
→

 + 3 j
→

 + 5 k
→

 + t 



i

→
 + 5 j

→
 + 

3
2 k
→

 

 (45) The point of intersection of the line r
→

 = ( )i
→

 − k
→

 + 

t( )3 i
→

 + 2 j
→

 + 7 k
→

 and the plane r
→

 . ( )i
→

 + j
→

 − k
→

 = 8 is  
  (1) (8, 6, 22)    (2) (− 8, − 6, − 22) (3) (4, 3, 11)    (4) (− 4, − 3, − 11) 
 (46) The equation of the plane passing through the point (2, 1, − 1) and the 

line of intersection of the planes r
→

 . ( )i
→

 + 3 j
→

 − k
→

 = 0 and  

r
→

 . ( )j
→

 + 2 k
→

 = 0 is 
  (1) x + 4y − z = 0  (2) x + 9y + 11z = 0 
  (3) 2x + y − z + 5 = 0 (4) 2x − y + z = 0 

 (47) The work done by the force F
→

 = i
→

 + j
→

 + k
→

 acting on a particle, if the 
particle is displaced from A(3, 3, 3) to the point B(4, 4, 4) is 

  (1) 2 units (2) 3 units (3) 4 units (4) 7 units 

 (48) If a
→

 = i
→

 − 2 j
→

 + 3 k
→

 and b
→

 = 3 i
→

 + j
→

 + 2 k
→

 then a unit vector 

perpendicular to a
→

 and b
→

 is 

  (1) 
i
→

 + j
→

 + k
→

3
  (2) 

i
→

 − j
→

 + k
→

3
 

  (3) 
− i
→

 + j
→

 + 2 k
→

3
 (4) 

i
→

 − j
→

 − k
→

3
 

 (49) The point of intersection of the lines 
x − 6
− 6

 = 
y + 4

4  = 
z − 4
− 8

 and  

x + 1
2  = 

y + 2
4  = 

z + 3
− 2

 is 

  (1) (0, 0, − 4) (2) (1, 0, 0) (3) (0, 2, 0) (4) (1, 2, 0) 
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 (50) The point of intersection of the lines 

  r
→

 = ( )− i
→

 + 2 j
→

 + 3 k
→

 + t ( )− 2 i
→

 + j
→

 + k
→

 and  

  r
→

 = ( )2 i
→

 + 3 j
→

 + 5 k
→

 + s( )i
→

 + 2 j
→

 + 3 k
→

 is 
  (1) (2, 1, 1) (2) (1, 2, 1) (3) (1, 1, 2) (4) (1, 1, 1) 

 (51) The shortest distance between the lines 
x − 1

2  = 
y − 2

3  = 
z − 3

4   and  

x − 2
3  = 

y − 4
4  = 

z − 5
5   is 

  (1) 
2
3

 (2) 
1
6

 (3) 
2
3 (4) 

1
2 6

  

 (52) The shortest distance between the parallel lines 

  
x − 3

4  = 
y − 1

2  = 
z − 5
− 3

 and 
x − 1

4  = 
y − 2

2  = 
z − 3

3  is 

  (1) 3 (2) 2 (3) 1 (4) 0 

 (53) The following two lines are 
x − 1

2  = 
y − 1
− 1

 = 
z
1  and 

x − 2
3  = 

y − 1
− 5

 = 
z − 1

2  

  (1) parallel (2) intersecting  (3) skew          (4) perpendicular 
 (54) The centre and radius of the sphere given by 

  x2 + y2 + z2 − 6x + 8y − 10z + 1 = 0 is 
  (1) (− 3, 4, − 5), 49 (2) (− 6, 8, − 10), 1 
  (3) (3, − 4, 5), 7  (4) (6, − 8, 10), 7 
 

 (55) The value of 



− 1 + i 3

2

100 

 + 



− 1 − i 3

2

100 

 is 

  (1) 2 (2) 0 (3) − 1 (4) 1 

 (56) The modulus and amplititude of the complex number [ ]e3 − i π/4 3
 are 

respectively 

  (1) e9, 
π
2 (2) e9, 

− π
2  (3) e6,  

− 3π
4  (4) e9, 

− 3π
4   

 (57) If (m − 5) + i(n + 4) is the complex conjugate of (2m + 3) + i(3n − 2) 
then (n, m) are 

  (1) 



− 

1
2  − 8  (2) 



− 

1
2 , 8  (3) 



1

2 , − 8  (4) 



1

2 , 8  
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 (58) If x2 + y2 = 1 then the value of 
1 + x + iy
1 + x − iy

  is 

  (1) x − iy (2) 2x (3) − 2iy (4) x + iy 
 (59) The modulus of the complex number 2 + i 3 is 
  (1) 3 (2) 13 (3) 7 (4) 7 

 (60) If A + iB = (a1 + ib1) (a2 + ib2) (a3 + ib3) then A2 + B2 is  

  (1) a1
2 + b1

2 + a2
2 + b2

2 + a3
2 + b3

2 

  (2) (a1 + a2 + a3)2 + (b1 + b2 + b3)2  

  (3) (a1
2 + b1

2) (a2
2 + b2

2) (a3
2 + b3

2) 

  (4) (a1
2 + a2

2 + a3
2) (b1

2 + b2
2 + b3

2) 

 (61) If a = 3 + i and z = 2 − 3i then the points on the Argand diagram 
representing az, 3az and − az are 

  (1) Vertices of a right angled triangle 
  (2) Vertices of an equilateral triangle 
  (3) Vertices of an isosceles triangle 
  (4) Collinear 
 (62) The points z1, z2, z3, z4 in the complex plane are the vertices of a 

parallelogram taken in order if and only if 
   (1) z1 + z4 = z2 + z3       (2) z1 + z3 = z2 + z4 

  (3) z1 + z2 = z3 + z4       (iv) z1 −  z2 = z3 − z4 

 (63) If z represents a complex number then arg (z) + arg ( )z


 is 
  (1) π/4 (2) π/2 (3) 0 (4) π/4 
 (64)  If the amplitude of a complex number is π/2 then the number is 
  (1) purely imaginary  (2) purely real 
  (3) 0  (4) neither real nor imaginary 
 (65) If the point represented by the complex number iz is rotated about the 

origin through the angle 
π
2 in the counter clockwise direction then the 

complex number representing the new position is  
  (1) iz (2) − iz (3) − z (4) z 

 (66) The polar form of the complex number (i25)
3
 is 

  (1) cos 
π
2  +  i sin 

π
2      (2) cos π + i sin π 

  (3) cos π − i sin π      (4) cos 
π
2  −  i sin 

π
2 
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 (67) If P represents the variable complex number z and if  | 2z −1 | = 2 | z | 
then the locus of P is 

  (1) the straight line x = 
1
4 (2) the straight line y = 

1
4 

  (3) the straight line z = 
1
2 (4) the circle x2 + y2 − 4x − 1 = 0 

 (68) 
1 + e−iθ

1 + eiθ   =   

  (1) cos θ  +  i sin θ  (2) cos θ − i sin θ 
  (3) sin θ −  i cos θ  (4) sin θ + i cos θ 

 (69) If zn = cos 
nπ
3   +  i sin 

nπ
3   then z1 z2 … z6 is 

  (1) 1 (2) − 1 (3) i (4) − i 
    

 (70) If − z


  lies in the third quadrant then z lies in the  
  (1) first quadrant  (2) second quadrant 
  (3) third quadrant  (4) fourth quadrant 

 (71) If x = cos θ + i sin θ the value of xn + 
1

xn is 

  (1) 2 cosnθ (2) 2 i sin nθ (3) 2 sin nθ (4) 2 i cos nθ 
 (72) If a = cos α − i sin α, b = cos β − i sin β 

     c = cos γ − i sin γ then (a2 c2 − b2) / abc is 
  (1) cos2(α − β + γ) + i sin 2(α − β + γ) 
  (2) − 2 cos (α − β + γ) 
  (3) − 2 i sin (α − β + γ) 
  (4) 2 cos (α − β + γ) 

 (73) z1 = 4 + 5i,  z2 = − 3 + 2i    then  
z1
z2

 is 

  (1)   
2

13 − 
22
13 i (2) − 

2
13 + 

22
13 i 

  (3) 
− 2
13   − 

23
13 i (4) 

2
13 + 

22
13 i 

 (74) The value of i + i22 + i23 + i24 + i25 is 
  (1) i  (2) − i (3) 1 (4) − 1 

 (75) The conjugate of i13 + i14 + i15 + i16 is 
  (1) 1 (2) − 1 (3) 0 (4) − i 
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 (76) If − i + 2 is one root of the equation ax2 − bx + c = 0, then the other root 
is 

  (1) − i − 2 (2) i − 2 (3) 2 + i (4) 2i + i 
 (77) The quadratic equation whose roots are ± i 7 is 

  (1) x2 + 7 = 0  (2) x2 − 7 = 0  

  (3) x2 + x + 7 = 0  (4) x2 − x −7 = 0 
 (78) The equation having 4 − 3i and 4 + 3i as roots is 

  (1) x2 + 8x + 25 = 0  (2) x2 + 8x − 25 = 0 

  (3) x2 − 8x + 25 = 0  (4) x2 − 8x − 25 = 0 

 (79) If 
1 − i
1 + i is a root of the equation ax2 + bx + 1 = 0, where a, b are real  then 

(a, b) is 
  (1) (1, 1) (2) (1, − 1) (3) (0, 1) (4) (1, 0) 

 (80) If − i + 3  is a root of x2 − 6x + k = 0 then the value of k is 
  (1) 5 (2) 5 (3) 10 (4) 10 
 
 (81) If ω is a cube root of unity then the value of  

  (1 − ω + ω2)
4
 + (1 + ω − ω2)

4
 is 

  (1) 0 (2) 32 (3) − 16 (4) − 32 
 (82) If ω is the nth root of unity then 

  (1) 1 + ω2 + ω4 + … = ω + ω3 + ω5 + … 

  (2) ωn = 0 (3) ωn = 1 (4) ω = ωn − 1 
 (83) If ω is the cube root of unity then the value of 

  (1 − ω) (1 − ω2) (1 − ω4) (1 − ω8) is 
  (1) 9 (2) − 9 (3) 16 (4) 32 

 (84) The axis of the parabola y2 − 2y + 8x − 23 = 0 is 
  (1) y = − 1 (2) x = − 3 (3) x = 3 (4) y = 1 

 (85) 16x2 − 3y2 − 32x − 12y − 44 = 0 represents  
  (1) an ellipse (2) a circle (3) a parabola         (4) a hyperbola 

 (86) The line 4x + 2y = c is a tangent to the parabola y2 = 16x then c is 
  (1) − 1 (2) − 2 (3) 4 (4) − 4 
 (87) The point of intersection of the tangents at t1 = t and t2 = 3t to the 

parabola y2 = 8x is 

  (1) (6t2, 8t) (2) (8t, 6t2) (3) (t2, 4t) (4) (4t, t2) 
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 (88) The length of the latus rectum of the parabola y2 − 4x + 4y + 8 = 0 is 

  (1) 8 (2) 6 (3) 4 (4) 2 

 (89) The diretrix of the parabola y2 = x + 4 is 

  (1) x = 
15
4  (2) x = − 

15
4  (3) x = − 

17
4  (4) x =  

17
4  

 (90) The length of the latus rectum of the parabola whose vertex is (2, − 3) 
and the directrix x = 4 is  

  (1) 2 (2) 4 (3) 6 (4) 8 

 (91) The focus of the parabola x2 = 16y is 

  (1) (4, 0) (2) (0, 4) (3) (− 4, 0) (4) (0, − 4) 

 (92) The vertex of the parabola x2 = 8y − 1 is 

  (1) 



− 

1
8, 0  (2) 



1

8, 0  (3) 



0,  

1
8  (4) 



0,  − 

1
8  

 (93) The line 2x + 3y + 9 = 0 touches the parabola y2 = 8x at the point 

  (1) (0, − 3) (2) (2, 4) (3) 



− 6, 

9
2  (4) 



9

2 ,  − 6   

 (94) The tangents at the end of any focal chord to the parabola y2 = 12x 
intersect on the line  

  (1) x − 3 = 0 (2) x + 3 = 0 (3) y + 3 = 0 (4) y − 3 = 0 

 (95) The angle between the two tangents drawn from the point (− 4, 4) to  

y2 = 16x is 

  (1) 45° (2) 30° (3) 60° (4) 90° 

 (96) The eccentricity of the conic 9x2 + 5y2 − 54x − 40y + 116 = 0 is 

  (1) 
1
3 (2) 

2
3 (3) 

4
9 (4) 

2
5

 

 (97) The length of the semi-major and the length of semi minor axis of the 

ellipse 
x2

144 + 
y2

169 = 1 are 

  (1) 26, 12 (2) 13, 24 (3) 12, 26 (4) 13, 12 

 (98) The distance between the foci of the ellipse 9x2 + 5y2 = 180 is 

  (1) 4  (2) 6 (3) 8 (4) 2 
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 (99) If the length of major and semi-minor axes of an ellipse are 8, 2 and their 
corresponding equations are y − 6 = 0 and x + 4 = 0 then the equations of 
the ellipse is 

  (1) 
(x + 4)2

4  + 
(y − 6)2

16  = 1 (2) 
(x + 4)2

16  + 
(y − 6)2

4  = 1 

  (3) 
(x + 4)2

16  − 
(y − 6)2

4  = 1 (4) 
(x + 4)2

4  − 
(y − 6)2

16  = 1 

(100) The straight line 2x − y + c = 0 is a tangent to the ellipse 4x2 + 8y2 = 32 if 
c is  

  (1) ± 2 3 (2) ± 6 (3) 36 (4) ± 4 

(101) The sum of the distance of any point on the ellipse 4x2 + 9y2 = 36 from 

( )5,  0 and ( )− 5,  0 is 
  (1) 4 (2) 8 (3) 6 (4) 18 

(102) The radius of the director circle of the conic 9x2 + 16y2 = 144 is 
  (1) 7 (2) 4 (3) 3 (4) 5 
(103) The locus of foot of perpendicular from the focus to a tangent of the 

curve 16x2 + 25y2 = 400 is 

  (1) x2 + y2 = 4 (2) x2 + y2 = 25 (3) x2 + y2 = 16       (4) x2 + y2 = 9 

(104) The eccentricity of the hyperbola 12y2 − 4x2 − 24x + 48y − 127 = 0 is 
  (1) 4  (2) 3 (3) 2 (4) 6 
(105) The eccentricity of the hyperbola whose latus rectum is equal to half of 

its conjugate axis is 

  (1) 
3

2  (2) 
5
3 (3) 

3
2 (4) 

5
2  

(106) The difference between the focal distances of any point on the hyperbola 

x2

a2 − 
y2

b2 = 1 is 24 and the eccentricity is 2. Then the equation of the 

hyperbola is 

  (1) 
x2

144 − 
y2

432 = 1  (2) 
x2

432 − 
y2

144 = 1    

  (3) 
x2

12 − 
y2

12 3
 = 1  (4) 

x2

12 3
 − 

y2

12 = 1 

(107) The directrices of the hyperbola x2 − 4(y − 3)2 = 16 are 

  (1) y = ± 
8
5

 (2) x = ± 
8
5

 (3) y = ± 
5

8  (4) x = ± 
5

8  
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(108) The line 5x − 2y + 4k = 0 is a tangent to 4x2 − y2 = 36 then k is 

  (1) 
4
9 (2) 

2
3 (3) 

9
4 (4) 

81
16 

(109) The equation of the chord of contact of tangents from (2, 1) to the 

hyperbola 
x2

16 − 
y2

9  = 1 is 

  (1) 9x − 8y − 72 = 0 (2) 9x + 8y + 72 = 0 
  (3) 8x − 9y − 72 = 0 (4) 8x + 9y + 72 = 0 

(110) The angle between the asymptotes to the hyperbola 
x2

16 − 
y2

9  = 1 is 

  (1) π − 2 tan−1 


3

4   (2) π − 2 tan−1 


4

3  

  (3) 2 tan−1 
3
4  (4) 2 tan−1 



4

3  

(111) The asymptotes of the hyperbola 36y2 − 25x2 + 900 = 0 are 

  (1) y = ± 
6
5 x (2) y = ± 

5
6 x (3) y = ± 

36
25 x (4) y = ± 

25
36 x 

(112) The product of the perpendiculars drawn from the point (8, 0) on the 

hyperbola to its asymptotes is 
x2

64 − 
y2

36 = 1 is 

  (1) 
25

576 (2) 
576
25  (3) 

6
25 (4) 

25
6  

(113) The locus of the point of intersection of perpendicular tangents to the 

hyperbola 
x2

16 − 
y2

9  = 1 is 

  (1) x2 + y2 = 25 (2) x2 + y2 = 4 (3) x2 + y2 = 3         (4) x2 + y2 = 7 
(114) The eccentricity of the hyperbola with asymptotes x + 2y − 5 = 0,  

2x − y + 5 = 0 is 
  (1) 3  (2) 2 (3) 3  (4) 2 
(115) Length of the semi-transverse axis of the rectangular hyperbola xy = 8 is 

  (1) 2 (2) 4 (3) 16 (4) 8 

(116) The asymptotes of the rectangular hyperbola xy = c2 are  

  (1) x = c, y = c (2) x = 0, y = c (3) x = c, y = 0       (4) x = 0, y = 0 

(117) The co-ordinate of the vertices of the rectangular hyperbola xy = 16 are 

  (1) (4, 4), (− 4, − 4)  (2) (2, 8), (− 2, − 8) 

  (3) (4, 0), (− 4, 0)  (4) (8, 0), (− 8, 0) 
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(118) One of the foci of the rectangular hyperbola xy = 18 is 
  (1) (6, 6) (2) (3, 3) (3) (4, 4) (4) (5, 5) 
(119) The length of the latus rectum of the rectangular hyperbola xy = 32 is 
  (1) 8 2 (2) 32 (3) 8 (4) 16 
(120) The area of the triangle formed by the tangent at any point on the 

rectangular hyperbola xy = 72 and its asymptotes is 
  (1) 36 (2) 18 (3) 72 (4) 144 

(121) The normal to the rectangular hyperbola xy = 9 at 



6,  

3
2   meets the curve 

again at  

  (1) 



3

8,  24  (2) 



− 24, 

− 3
8  (3) 



− 3

8 ,  − 24  (4) 



24,  

3
8  
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ANSWERS 
EXERCISE 1.1 

 (1) (i) 






− 4   1

− 2   3
  (ii) 







15    6    − 15

0    − 3    0

− 10    0    5

  (iii) 







− 3    1    7

− 1   − 1    5

5    1    − 13

  

 (2) 






− 5   − 2

− 3    1
  (3) 







1    − 1    0

− 2    3    − 4

− 2    3    − 3

  

 (4) (i) 
1
9  







0    3    3

3    2    − 7

3   − 1   − 1

    (ii) 
1
35  







− 4    11    − 5

− 1   − 6    25

6    1    − 10

     (iii)









3   2   6

1   1   2

2   2   5

   

   (iv) 







2   1   − 1

0   2    1

5   2   − 3

  (v) 
1
5  







4    − 2   − 1

− 1    3    − 1

− 1   − 2    4

              (6)  







1    − 1    0

− 2    3    − 4

− 2    3    − 3

  

EXERCISE 1.2 

 (1) x = 3, y = − 1 (2) x = − 1, y = 2 (3) x = 1, y = 3, z = 5 

 (4) x = 4, y = 1, z = 0 (5) x = 1, y = 1, z = 1 

EXERCISE 1.3 

 (1) 2 (2) 1 (3) 2 (4) 3 (5) 2 (6) 2 

EXERCISE 1.4 

  (1) (1, 1)  (2) No solution (3) 



1

4 (9 − 5k), k  ; k∈ R 

 (4) (1, 1, 1)  (5) (4 − k, 3k − 4, k) ; k ∈ R  (6) (1, 2, 3) 

 (7) 



1

3 (5k − 12), 
1
3 (15 − 4k), k  ; k ∈ R (8) 



1

2 (2 + s − t, s, t)  ; s, t ∈ R 

 (9) (1, 2, 1)  (10) (50 + 2k, 50 − 3k, k) ; k = 0, 1, 2, … 16 
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EXERCISE 1.5 

  (1) (i) Consistent : x = 4, y = − 1, z = 2 
(ii) Consistent :x = 2k − 1,  y = 3 − 2 k, z = k infinitely many solutions. 

(iii) Inconsistent 

(iv) Inconsistent 

  (v) Consistent : x = 1 − k1 + k2,  y = k1, z = k2,  infinitely many 

solutions. 

 (2) If λ ≠ 0 the system has a unique solution. 

  If λ = 0, the system has infinitely many solutions. 
 (3) When k ≠ 1, k ≠ − 2 the system has a unique solution.  
  When k = 1, the system is consistent and has infinitely many solutions. 
  When k = − 2 the system is inconsistent and has no solution. 

EXERCISE 2.1 

  (1) 4 (2)  − 15 (3)  
3
2           (4)  (i) m = − 15    (ii) m = 

2
3 

 (5) 



π

3 ,   
2π
3 ,   

π
4  (10) 22 (11) − 25 

 (14) (i) 0 (ii) 
− 10

30
 (iii) 

9
21

  

EXERCISE 2.2 

 (5) 7 (6) 
50
3  (7) 17 (8)  

124
7  

EXERCISE 2.3 

  (1) 6   (2) 3 7  (3) ± 
− i
→

 − j
→

 + 3 k
→

11
  (4) ±

10 i
→

  − 10 j
→

 + 5 k
→

3   (5) 
π
4  (6)  

π
6 

EXERCISE 2.4 

  (1) 6 59  (2) 
49
2  (3) 6 5 (4) 

1
2 165 

 (8) − 24 i
→

 + 13 j
→

 + 4 k
→

 (10) 7 10 ,  




3

10
,  0  

− 1
10

  

EXERCISE 2.5 
  (2) − 3 (11) − 4 
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EXERCISE 2.6 

  (1) 



2

7,   
3
7,   

− 6
7            (2) (i) not possible   (ii) yes   (3) 





1

3
,  

1
3
,  

1
3

       

 (4) The d.c’s are 




3

5 2
 , 

4
5 2

 , 
5

5 2
 and r

→
 = 7 ( )3 i

→
 + 4 j

→
 + 5 k

→
 

 (5) ± 




− 

1
26
,   

− 4
26
,  

3
26

 

 (6) r
→

 = ( )3 i
→

 − 4 j
→

 − 2 k
→

 + t ( )9 i
→

 + 6 j
→

 + 2 k
→

  ;  
x − 3

9   =  
y + 4

6  =  
z + 2

2  

 (7) r
→

 = ( )i
→

 − 2 j
→

 + k
→

 + t ( )− i
→

 + 2 k
→

  ;  
x − 1
− 1

 = 
y + 2

0  = 
z − 1

2  

 (8) cos−1 



20

21   (9) cos−1 




1

21
 

EXERCISE 2.7 

  (1) (i) 
5
2 (ii) 

285
14  (3) (1, − 1, 0) (4) 3 30 (6) − 2 

EXERCISE 2.8 

  (1) 
r
→

 . ( )2 i
→

 + 7 j
→

 + 8 k
→

117
 = 18   ;   2x + 7y + 8z = 54 13 

 (2) ± 
(2 i
→

 − j
→

 + 2 k
→

)
3     (3) 2 units   (4)   8x − 4y + 3z = 89  (5) 4x + 2y − 3z = 3 

 (6) [ ](x − 2) i
→

 + (y + 1) j
→

 + (z − 4) k
→

 . ( )4 i
→

 − 12 j
→

 − 3 k
→

 = 0 

  4x − 12y − 3z − 8 = 0 

 (7) r
→

 ( )2 i
→

 + 2 j
→

 + k
→

 + s ( )2 i
→

 + 3 j
→

 + 3 k
→

 + t ( )3 i
→

 + 2 j
→

 + k
→

 

  3x − 7y + 5z + 3 = 0  

 (8) r
→

 = ( )i
→

 + 3 j
→

 + 2 k
→

 + s ( )2 i
→

 − j
→

 + 3 k
→

 + t ( )i
→

 + 2 j
→

 + 2 k
→

 

  8x + y − 5z − 1 = 0 

 (9) r
→

 = ( )− i
→

 + 3 j
→

 + 2 k
→

 + s ( )i
→

 + 2 j
→

 + 2 k
→

 + t ( )3 i
→

 + j
→

 + 2 k
→

 

and 2x + 4y − 5z = 0 
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 (10) r
→

 = ( )i
→

 − 2 j
→

 + 3 k
→

 + s ( )− 2 i
→

 + 4 j
→

 − 4 k
→

 + t( )2 i
→

 + 3 j
→

 + 4 k
→

 
and 2x − z + 1 = 0 

 (11) r
→

 = ( )i
→

 + 2 j
→

 + 3 k
→

 + s ( )i
→

 + j
→

 − 2 k
→

 + t ( )3 i
→

 − 2 j
→

 + 4 k
→

 

  2y + z − 7 = 0 

 (12) r
→

 = ( )− i
→

 + j
→

 − k
→

 + s( )3 i
→

 + j
→

 + 2 k
→

 + t( )2 i
→

 + 3 j
→

 − 2 k
→

  

  and 8x − 10y − 7z + 11 = 0 

 (13) r
→

 = ( )3 i
→

 + 4 j
→

 + 2 k
→

 + s ( )− i
→

 + 6 j
→

 − 3 k
→

 + t( )4 i
→

 − 4 j
→

 − k
→

  

  and 6x + 13y − 28z − 14 = 0 

 (15) (i) 2x  − 5y − z + 15 = 0     (ii) 2y − z − 1 = 0 

EXERCISE 2.9 
  (1) 11x − 10y − 13z + 70 = 0     (2) No. Because of the lines are skew lines 

 (3) (2, 0, 0) (4) (6, − 1, − 5)         (5) 
7
30

        (6) 
3

2 11
 

EXERCISE 2.10 

  (1) (i)  
π
3      (ii) cos−1 





− 5

58
   (iii)  cos−1 





9

231
  (3) 

3
5     (4) sin−1 





3

2 91
     (5) 

π
3 

EXERCISE 2.11 

  (1)  r
→

 − ( )2 i
→

 − j
→

 + 3 k
→

 = 4  and x2 + y2 + z2 − 4x + 2y − 6z − 2 = 0 

 (2)  r
→

 − ( )2 i
→

 + 6 j
→

 − 7 k
→

 .  r
→

 − ( )− 2 i
→

 + 4 j
→

 − 3 k
→

 = 0 and  

x2 + y2 + z2 − 10y + 10z + 41 = 0 

  Centre is (0, 5, − 5) and radius is 3 units. 

 (3)  r
→

 − ( )i
→

 − j
→

 + k
→

 = 5  ;   x2 + y2 + z2 − 2x + 2y − 2z − 22 = 0 

 (4) B (4, − 2, 1) 

 (5) (i)  Centre  (2, − 1, 4)  ;  r = 5 units 

  (ii) Centre 



− 

3
2, 

1
2, − 2 , r = 2 units 

  (iii) Centre (− 2, 4, − 1),  r = 26 units 

  (iv) Centre (2, 1, − 3), r = 5 units 
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EXERCISE 3.1 

  (1) (i) 1 + 3i (ii) − i (iii) − 10 + 10i (iv) 1 

 (2)  R.P. I.P. 

  (i)  
1
2   

− 1
2  

  (ii) 
− 7
25  

26
25 

  (iii) 8 − 1 

 (3) n = 4 

 (4) (i) x = 2,   y = − 1 

  (ii) x = 3,  y = − 1 

  (iii) x = − 7,  y = − 3 and x = 
− 8
3   ,  y = 

4
3 

 (5) x = ± 1,   y = − 4  and   x = ± 2i,  y = 1 

EXERCISE 3.2 

  (2) 1 − 3i and − 1 +3 i 

 (3) 




1

2
 + i  

1
2

  ;  




− 

1
2

 − i   
1
2

 

 (6) (i) 4 cis 
π
3        (ii)  2 cis 

2π
3      (iii) 2 cis 



− 

3π
4      (iv) 2 cis 



− 
π
4  

 (8) (i) x + 2y = 2 (ii) y = 0 (iii) x + y + 1 = 0 

  (iv) 4x2 + 4y2 − 12x + 5 = 0 (v) x2 + y2 + 2x − 3 = 0 
EXERCISE 3.3 

  (1) 3 ± i ,   1 ± i             (2)  1 ± 2i,   1 ± i  (3) 2 ± i,   
2
3 ,  

− 1
2  

EXERCISE 3.4 
  (1) cis (− 107θ)  (2) cis (3α + 4β) 

EXERCISE 3.5 

  (1) (i) cis 
π
6,   cis 

5π
6 ,    cis 

9π
6  (ii) 2 cis 

π
6,   2cis 

5π
6 ,    2cis 

9π
6   

  (iii) 22/3 cis 



− 5π

9  ,   22/3 cis 
π
9,    22/3 cis 



7π

9  
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 (4) (i) 2 cis 
π
4,   2 cis 

3π
4 ,  2 cis 

5π
4   and  2 cis 

7π
4  

  (ii) cis 
π
5,  cis 

3π
5 ,  cis 

7π
5 ,   cis 

9π
5  

 (5) cis (2k − 1) 
π
4  ,  k  = 0, 1, 2, 3 

EXERCISE 4.1 

  (1) (i) 4x2 − 16x + 36y + 43 = 0   (ii) 9x2 − 12xy + 4y2 + 38x − 60y + 121 = 0 

  (iii) x2 = − 16y (iv) (y − 4)2 = − 12(x − 1) 

  (v) (x−1)2 = 12(y − 2) (vi) (y − 4)2 = − 12(x − 1) 

  (vii) (x − 3)2 = − 8(y + 2) (viii) (y + 1)2 = 8(x − 3) 

  (ix) (x − 2)2 = 16(y − 3)  

Q. 
No. 

Axis Vertex Focus 

Equation  
of 

directrix 

Equation of 
Latus rectum 

Length of the 
Latus rectum 

(i) y = 0 (0, 0) (− 2, 0) x − 2 = 0 x + 2 = 0 8 

(ii) x = 0 (0, 0) (0, 5) y  + 5 = 0  y − 5 = 0 20 

(iii) x − 4 = 0 (4, − 2) (4, − 1) y + 3 = 0 y + 1 = 0 4 

(iv) y − 3 = 0 (1, 3) (− 1, 3) x − 3 = 0 x + 1 = 0 8 

2) 

(v) x − 3 = 0 (3, − 1) (3, 2) y + 4 = 0 y − 2 = 0 12 

  (3) Distance = 5 cm.  

 (4) Diameter = 40 2 cm      (5) 20 2 mts 

EXERCISE 4.2 

  (1) (i) 16x2 + 25y2 − 96x + 50y − 231 = 0 

  (ii)  
(x − 1)2

4  + 
(y + 1)2

3  = 1 (iii) 
x2

25 + 
y2

16 = 1 

  (iv)  
(x − 3)2

4  + 
(y + 4)2

1  = 1 (v) 
x2

9  + 
y2

5  = 1 

  (vi)  
(x − 2)2

40  + 
(y − 5)2

49  = 1 (vii) 
(x − 3)2

25  + 
(y + 1)2

16  = 1 

  (viii) 
x2

25 + 
y2

16 = 1       (ix) 
x2

16 + 
y2

4  = 1     
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 (2) (4, − 6)  (3) 
x2

81/4  +  
y2

45/4 = 1 

(4) No. Equation of 
major axis 

Equation of 
minor axis 

Length of 
major axis 

Length of 
minor axis 

 (i) y = 0 x = 0 10 6 

 (ii) y − 2 = 0 x + 1 = 0 6 2 5 

 (iii) x = 0 y = 0 2 5 4 5
3  

 (iv) x + 1 = 0 y − 2 = 0 8 6 

 

(5) No. Equation of 
directrices 

Equation of the 
latus rectums 

Length of the  

latus rectum 

 (i) 
x = ± 

169
12  x = ± 12 50

13 

 (ii) 
x = ± 

16
7

 x = ± 7 9
2 

 (iii) 
x = 4 ± 

20
3

 x = 4 ± 5 3 5 

 (iv) y = 10; y = − 8 y = 4 ; y = − 2 4 3 

 

(6) No. e Centre Foci Vertices 

 (i) 3
5 

(0, 0) (± 3, 0) (± 5, 0) 

 (ii) 3
2  

(4, 2) ( )4 ± 5 3, 2  (14, 2) ; (− 6, 2) 

 (iii) 5
3  

(0, 0) ( )0, ± 5  (0, ± 3) 

 (iv) 7
4  

(− 1, 2) ( )− 1, 2 ± 7  (− 1, 6), (− 1, − 2) 
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  (7) 
x2

16 + 
y2

7  = 1  (8) 1200 km 

 (9)  (i) 28.584 million miles   (ii) 43.416  million miles  

 (10) 
4
5  319 feet 

EXERCISE 4.3 

  (1) (i)    x2 − 16xy − 11y2 + 20x + 50y − 35 = 0 (ii) 
y2

25 − 
x2

24 = 1 

  (iii)  
y2

36 − 
x2

288 = 1  (iv)   
(x − 1)2

16  − 
(y + 2)2

9  = 1  

  (v)  
(y − 5)2

75  − 
(x − 2)2

25  = 1 (vi)   
y2

36 − 
x2

28 = 1 

  (vii) 
x2

1  − 
(y − 5)2

8  = 1 (viii) 
(x − 1)2

25/4  − 
(y − 4)2

75/4  = 1 

  (ix) 
(x − 1)2

9  − 
(y + 1)2

16  = 1 

(2) No. Equation of 
transverse 

axis 

Equation of 
Conjugate 

axis 

Length of 
Transverse 

axis 

Length of 
Conjugate 

axis 

 (i) y = 0 x = 0 10 24 

 (ii) x = 0 y = 0 2 2 4 2 

 (iii) y − 2 = 0 x + 3 = 0 6 8 

 

(3) No. Equations of 
Directrices 

Equation of  
Latus rectums 

Length of 
latus rectum 

 (i) 
x = ± 

36
13

 x = ± 4 13 32
3  

 (ii) 
y = 4 ± 

9
13

 y = 4 ± 13 8
3 
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(5) No. Eccentricity Centre Foci Vertices 

 (i) 
e = 

41
4  

(0, 0) ( )± 41, 0  (± 4, 0) 

 (ii) 
e = 

34
3  

(0, 0) ( )0, ± 34  (0, ± 3) 

 (iii) 
e = 

5
2  

(− 3, 2) ( )− 3 ± 5, 2   (− 1, 2), (− 5, 2) 

 (iv) e = 2 (− 3, 1) (− 3, 5) (− 3, − 3) (− 3, 3) (− 3, − 1) 

EXERCISE 4.4 

  (1) (i) x + y + 3 = 0  ;  x − y − 9 = 0   

  (ii) 2x + 3y + 3 = 0  ;  3x − 2y + 11 = 0 

  (iii) x − 2y + 2 = 0  ;  2x + y − 1 = 0          

  (iv)  x = 3 ; y = 0 

  (v) 18x + 5y = 31  ;  5x − 18y − 28 = 0 

 (2) (i)2x − y + 1 = 0 ; 2x + 4y − 9 = 0     

  (ii) x + 2y − 8 = 0  ;  2x − y − 6 = 0 

  (iii) 4x + 5 3 y = 40  ;  10 3 x − 8y − 9 3 = 0 

  (iv) 4 3 x − 3y = 18  ;  3x + 4 3 y − 14 3 = 0 

 (3) (i) 3x − 2y + 2 = 0 (ii) x + 3y + 36 = 0 

  (iii) y = x ± 5 (iv) 10x − 3y ± 32 = 0 

 (4) (i) x + 2y + 4 = 0  ;  x + y + 1 = 0  

  (ii) x − 2y + 5 = 0  ;  5x + 4y − 17 = 0 

  (iii) 3x + y − 5 = 0  ;  x − y + 1 = 0 

 (5) 



5, 

− 4
3  (6) (− 3, 1) 

 (7) (i) 4x − y − 12 = 0      (ii) x + 5y − 5 = 0       (iii) 10x − 9y − 12 = 0 



 287

EXERCISE 4.5 

  (1) (i) 



x

5  −  
y
6  = 0   and   



x

5 + 
y
6  = 0    

  (ii) 4x − y + 1 = 0  and 2x + 3y − 1 = 0 

 (2) (i)  (2x + 3y − 8)  (3x − 2y + 1) = 110 

  (ii) (x + 2y − 10)  (x − 2y + 6) + 64 = 0 

 (3) (i) 
2π
3       (ii) 2 tan−1 

3
2    (iii)  2tan−1 

5
2  

EXERCISE 4.6 

  (1) 



x + 

1
2   



y + 

1
2  = 

9
8 

 (2) (i)  4x + 3y − 24 = 0  ;  3x − 4y + 7 = 0 

  (ii) x + 8y = 0  ;  32x − 4y + 65 = 0 

 (3) (x + 2y − 5)  (2x − y + 4) = 16 

 (4) (x − 1) (y − 3) = 16 

  x − 1 = 0  and y − 3 = 0 

 (5) (3x − y − 5) (x + 3y − 5) − 7 = 0 

 (6) (i)   x − h = 0  and  y − k = 0 

  (ii)  (x + 2) = 0  ;  



y + 

3
2  = 0 

  (iii)  3x − 2y + 3 = 0 

   2x + 3y + 2 = 0 
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KEY TO OBJECTIVE TYPE QUESTIONS 

Q.No Key Q.No Key Q.No Key Q.No Key Q.No Key 

1 1 26 4 51 2 76 3 101 3 

2 3 27 2 52 1 77 1 102 4 

3 1 28 2 53 3 78 3 103 2 

4 3 29 4 54 3 79 4 104 3 

5 1 30 3 55 3 80 4 105 4 

6 3 31 1 56 4 81 3 106 1 

7 3 32 1 57 1 82 3 107 2 

8 4 33 3 58 4 83 1 108 3 

9 3 34 4 59 3 84 4 109 1 

10 3 35 2 60 3 85 4 110 3 

11 1 36 1 61 4 86 4 111 2 

12 4 37 3 62 2 87 1 112 2 

13 1 38 3 63 3 88 3 113 1 

14 2 39 3 64 1 89 3 114 2 

15 1 40 4 65 3 90 4 115 2 

16 4 41 1 66 4 91 2 116 4 

17 1 42 2 67 1 92 3 117 1 

18 2 43 2 68 2 93 4 118 1 

19 3 44 4 69 2 94 2 119 4 

20 3 45 2 70 4 95 4 120 4 

21 4 46 2 71 1 96 2 121 3 

22 2 47 2 72 3 97 4 

23 3 48 4 73 3 98 3 

24 4 49 1 74 1 99 2 

25 3 50 3 75 3 100 2 

 

 




