Sample Question Paper CLASS: XII Session: 2021-22 Mathematics (Code-041) Term - 1

Time Allowed: 90 minutes

Maximum Marks: 40

General Instructions:

- 1. This question paper contains three sections A, B and C. Each part is compulsory.
- 2. Section A has 20 MCQs, attempt any 16 out of 20.
- 3. Section B has 20 MCQs, attempt any 16 out of 20
- 4. Section C has 10 MCQs, attempt any 8 out of 10.
- 5. All questions carry equal marks.
- 6. There is no negative marking.

SECTION – A

In this section, attempt any 16 questions out of Questions 1 – 20. Each Question is of 1 mark weightage.

1.	$\frac{\sin \left[\frac{\pi}{3} - \sin^{-1} \left(-\frac{1}{2}\right)\right] \text{ is equal to:}}{\begin{vmatrix} a \\ 2 \\ c \\ c \end{vmatrix} - 1 \qquad b) \frac{1}{3} \qquad d) 1$	1
2.	The value of k (k < 0) for which the function <i>f</i> defined as $f(x) = \begin{cases} \frac{1-coskx}{xsinx}, & x \neq 0\\ \frac{1}{2} & , x = 0\\ 1 & x = 0 \end{cases}$ is continuous at <i>x</i> = 0 is:	1
	a) ± 1 b) -1 c) $\pm \frac{1}{2}$ d) $\frac{1}{2}$	
3.	If A = $[a_{ij}]$ is a square matrix of order 2 such that $a_{ij} = \begin{cases} 1, when i \neq j \\ 0, when i = j \end{cases}$, then A ² is:	1
	a) $\begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}$ b) $\begin{vmatrix} 1 & 1 \\ 0 & 0 \end{vmatrix}$	
	c) $\begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix}$ d) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	
4.	Value of k, for which A = $\begin{bmatrix} k & 8 \\ 4 & 2k \end{bmatrix}$ is a singular matrix is:	1
	a) 4 b) -4 c) ±4 d) 0	

5.	Find the intervals in which the fu increasing:	nction f given by f (x) = $x^2 - 4x +$	- 6 is strictly	1
	a) (-∞, 2) ∪ (2, ∞)	b) (2, ∞)		
	c) $(-\infty, 2)$	d) (−∞, 2]∪ (2, ∞)		
6.	Given that A is a square matrix of equal to:	of order 3 and A = - 4, then ac	dj A is	1
	a) -4	b) 4		
	c) -16	d) 16		
7.		defined as R = {(1, 1), (1, 2), (2, 2 air in R shall be removed to make		1
	a) (1, 1)	b) (1, 2)		
	c) (2, 2)	d) (3, 3)		
8.	If $\begin{bmatrix} 2a+b & a-2b\\ 5c-d & 4c+3d \end{bmatrix} = \begin{bmatrix} 4 & -3\\ 11 & 24 \end{bmatrix}$, then value of a + b - c + 2d is:		1
	a) 8	b) 10		
	c) 4	d) -8		
9.	The point at which the normal to the line $3x - 4y - 7 = 0$ is:	the curve $y = x + \frac{1}{x}$, $x > 0$ is perp	endicular to	1
	a) (0, 5/0)	b) (.0. 5/0)		
	a) (2, 5/2) c) (- 1/2, 5/2)	b) (±2, 5/2) d) (1/2, 5/2)		
10.	$ \sin(\tan^{-1}x) $, where $ x < 1$, is equ			1
	a) $\frac{x}{\sqrt{1-x^2}}$	b) $\frac{1}{\sqrt{1-x^2}}$		
	$\sqrt{1-x^2}$	$0) \frac{1}{\sqrt{1-x^2}}$		
	C) $\frac{1}{\sqrt{1+x^2}}$	d) $\frac{x}{\sqrt{1+x^2}}$		
11.		$x \in Z : 0 \le x \le 12$, given by R =		1
	b is a multiple of 4}. Then [1], th	e equivalence class containing T	, 15.	
			, 15.	
		b) {0, 1, 2, 5} d) A		
12.	a) {1, 5, 9} c) φ	b) {0, 1, 2, 5}	, IS.	1
12.	a) {1, 5, 9}	b) {0, 1, 2, 5}	, is.	1
12.	a) {1, 5, 9} c) φ	b) {0, 1, 2, 5}	, IS.	1
12.	a) {1, 5, 9} c) ϕ If $e^{x} + e^{y} = e^{x+y}$, then $\frac{dy}{dx}$ is:	b) {0, 1, 2, 5} d) A	, IS.	1

13.	Given that matrices A and B are order of matrix $C = 5A + 3B$ is:	of order 3×n and m×5 respectively, then the	1
	a) 3×5	b) 5×3	
	a) 3×5 c) 3×3	d) 5×5	
14.	If y = 5 cos x - 3 sin x, then $\frac{d^2y}{dx^2}$ is	s equal to:	1
	a) - y	b) y	
	c) 25y	d) 9y	
15.	For matrix A = $\begin{bmatrix} 2 & 5 \\ -11 & 7 \end{bmatrix}$, $(adjA)'$	is equal to:	1
	a) $\begin{bmatrix} -2 & -5\\ 11 & -7 \end{bmatrix}$	b) $\begin{bmatrix} 7 & 5\\ 11 & 2 \end{bmatrix}$	
	c) $\begin{bmatrix} 7 & 11 \\ -5 & 2 \end{bmatrix}$	d) $\begin{bmatrix} 7 & -5\\ 11 & 2 \end{bmatrix}$	
16.	The points on the curve $\frac{x^2}{9} + \frac{y^2}{16} = 1$ at which the tangents are parallel to y- axis are:		1
	a) (0,±4) c) (±3,0)	b) (±4,0) d) (0, ±3)	
17.	Given that $A = [a_{ij}]$ is a square matrix of order 3×3 and $ A = -7$, then the value of $\sum_{i=1}^{3} a_{i2}A_{i2}$, where A_{ij} denotes the cofactor of element a_{ij} is:		1
	a) 7	b) -7	
	c) 0	d) 49	
18.	If $y = \log(\cos e^x)$, then $\frac{dy}{dx}$ is:		1
	a) $\cos e^{x-1}$	b) $e^{-x} \cos e^{x}$	
	c) $e^x \sin e^x$	d) $-e^x \tan e^x$	
19.	Based on the given shaded region as the feasible region in the graph, at which point(s) is the objective function $Z = 3x + 9y$ maximum?		1
	25 D(0,20)		
	15 A C(15,15)	0,0)	
	$X' \underbrace{\begin{array}{c} 0 \\ y' \\ $	x + 3y = 60	
	a) Point B	b) Point C	
	c) Point D	d) every point on the line segment CD	

20.	The least value of the function $f(x) = 2\cos x + x$ in the closed interval $[0, \frac{\pi}{2}]$ is:		
	a) 2	b) $\frac{\pi}{6} + \sqrt{3}$	
	C) $\frac{\pi}{2}$	d) The least value does not exist.	
	In this section, attempt any 16 que	<u>ON – Β</u> stions out of the Questions 21 - 40. f 1 mark weightage.	
21.	The function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined as $f(x)$	$= x^3$ is:	1
	a) One-on but not onto c) Neither one-one nor onto	b) Not one-one but ontod) One-one and onto	
22.	If $x = a \sec \theta$, $y = b \tan \theta$, then $\frac{d^2y}{dx^2}$ at θ	$\theta = \frac{\pi}{6}$ is:	1
	a) $\frac{-3\sqrt{3}b}{a^2}$ c) $\frac{-3\sqrt{3}b}{a}$	b) $\frac{-2\sqrt{3}b}{a}$ d) $\frac{-b}{3\sqrt{3}a^2}$	
	$c) \frac{-3\sqrt{3}b}{a}$	d) $\frac{-b}{3\sqrt{3}a^2}$	
23.	shaded.	Traph, the feasible region for a LPP is function $Z = 2x - 3y$, will be minimum	1
) (6, 8)) (6, 5)	
24.	The derivative of sin ⁻¹ $(2x\sqrt{1-x^2})$ w.		1
	a) 2 b) $\frac{\pi}{2}$ - c) $\frac{\pi}{2}$ d) -2	2	
25.	If $A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 2 \\ -4 & 2 \\ 2 & -1 \end{bmatrix}$	$\begin{bmatrix} -4 \\ -4 \\ 5 \end{bmatrix}$, then:	1
		I	

26.	The real function $f(x) = 2x^3 - 3x^2 - 36x + 7$ is:		1
	a) Strictly increasing in $(-\infty, -2)$ and	strictly decreasing in $(-2, \infty)$	
	b) Strictly decreasing in $(-2,3)$		
	c) Strictly decreasing in $(-\infty, 3)$ and s	strictly increasing in $(3, \infty)$	
	d) Strictly decreasing in $(-\infty, -2) \cup ($	3,∞)	
27.	Simplest form of $\tan^{-1}\left(\frac{\sqrt{1+\cos x}+\sqrt{1-\cos x}}{\sqrt{1+\cos x}-\sqrt{1-\cos x}}\right)$, π	$< x < \frac{3\pi}{100}$ is:	1
	a) $\frac{\pi}{4} - \frac{x}{2}$	b) $\frac{3\pi}{2} - \frac{x}{2}$	
	C) $-\frac{x}{2}$	d) $\pi - \frac{x}{2}$	
28.	Given that A is a non-singular matrix of ore of 2A is:	der 3 such that $A^2 = 2A$, then value	1
	a) 4	b) 8	
	c) 64	d) 16	
29.	The value of <i>b</i> for which the function $f(x)$ decreasing over R is:	= x + cosx + b is strictly	1
	a) $b < 1$	b) No value of b exists	
	c) $b \le 1$	d) $b \ge 1$	
30.	Let R be the relation in the set N given by	$R = \{(a, b) : a = b - 2, b > 6\}, then:$	1
	a) $(2,4) \in \mathbb{R}$	b) (3,8) ∈ R	
	c) (6,8) ∈ R	d) (8,7) ∈ R	
31.	The point(s), at which the function f given	by $f(x) = \begin{cases} \frac{x}{ x }, x < 0\\ -1, x > 0 \end{cases}$	1
	is continuous, is/are:	(1) ~ _ 0	
	a) xeR	b) $x = 0$	
	c) $x \in \mathbb{R} - \{0\}$	d) $x = -1$ and 1	
32.	If $A = \begin{bmatrix} 0 & 2 \\ 3 & -4 \end{bmatrix}$ and $kA = \begin{bmatrix} 0 & 3a \\ 2b & 24 \end{bmatrix}$, then the are:	the values of k, a and b respectively	1

	a) -6, -12, -18 c) -6, 4, 9	b) -6, -4, -9 d) -6, 12, 18	
33.			1
	A linear programming problem is Minimize Z = 30x + 50y	as follows.	1
	subject to the constraints,		
	$3x + 5y \ge 1$	15	
	$2x + 3y \leq 2x + 3y \leq 3x + 3y < 3x + 3x + 3x + 3y < 3x + 3x$		
	$x \ge 0, y \ge 1$		
	In the feasible region, the minimu		
	a) a unique point	b) no point	
	c) infinitely many points	d) two points only	
34.	-	d by function f and given by $f(x) = (10 + 1)$	1
	$x)\sqrt{100-x^2}$, then the area when	it is maximised is:	
	a) 75 <i>cm</i> ²	b) $7\sqrt{3}cm^2$	
	c) $75\sqrt{3}cm^2$	d) $5cm^2$	
35.	If A is accused matrix such that A^2	= A, then $(I + A)^3 - 7$ A is equal to:	1
		= A, then $(1 + A)^2 - 7 A$ is equal to.	I
	a) A	b) I + A	
	a) A c) I – A	d) I	
36.	If $\tan^{-1} x = y$, then:		1
	a) −1 < y < 1	b) $\frac{-\pi}{2} \le y \le \frac{\pi}{2}$	
	c) $\frac{-\pi}{2} < y < \frac{\pi}{2}$	d) $y \in \{\frac{-\pi}{2}, \frac{\pi}{2}\}$	
		2 2	
37.		and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function	1
	from A to B. Based on the given i	mormation, <i>f</i> is best defined as:	
	a) Surjective function	b) Injective function	
	c) Bijective function	d) function	
38.		ven hv:	1
	For A = $\begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$, then 14A ⁻¹ is given by:		
	r2 11	r4 21	
	a) $14\begin{bmatrix} 2 & -1 \\ 1 & 3 \end{bmatrix}$	b) $\begin{bmatrix} 4 & -2 \\ 2 & 6 \end{bmatrix}$	
	-1 5 -	-2 0 -	
	c) $2\begin{bmatrix} 2 & -1 \\ 1 & -3 \end{bmatrix}$	d) $2\begin{bmatrix} -3 & -1 \\ 1 & -2 \end{bmatrix}$	
		1 L 1 -2J	
39.	The point(s) on the curve $y = x^3$.	-11x + 5 at which the tangent is $y = x - 11$	1
	is/are:	x = x + y = x + 11	I
	a) (-2,19)	b) (2, - 9)	
	c) (±2,19)	b) (2, - 9) d) (-2, 19) and (2, -9)	
40.	Given that A = $\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ and A ² =	3I, then:	1
	$[\gamma -\alpha]$		

	a) $1 + \alpha^2 + \beta \gamma = 0$ c) $3 - \alpha^2 - \beta \gamma = 0$	b) $1 - \alpha^2 - \beta \gamma = 0$ d) $3 + \alpha^2 + \beta \gamma = 0$	
	<u>SE</u> In this section Each question	ECTION – C , attempt any 8 questions. n is of 1-mark weightage. are based on a Case-Study.	
41.	the feasible region determined by	+ by, where $a, b > 0$; the corner points of y a set of constraints (linear inequalities) are 40). The condition on a and b such that the oints (30, 30) and (0, 40) is: b) $a = 3b$ d) $2a - b = 0$	1
42.	a) $\frac{1}{2}$ b	$y = mx + 1$ a tangent to the curve y $^2 = 4x$?	1
43.	c) 1	$(1+1]^{\frac{1}{3}}, 0 \le x \le 1$ is: $(1)^{\frac{1}{2}}, \sqrt{\frac{1}{3}}, 0 \le x \le 1$ is: $(1)^{\frac{1}{2}}, \sqrt{\frac{1}{3}}, 0 \le x \le 1$ is:	1
44.	In a linear programming problem and y are $x - 3y \ge 0, y \ge 0, 0 \le$ a) is not in the first quadrant c) is unbounded in the first quadrant	 b) is bounded in the first quadrant d) does not exist 	1
45.	$\begin{bmatrix} 1 & \sin\alpha & 1 \end{bmatrix}$	where $0 \le \alpha \le 2\pi$, then: b) $ A \epsilon(2, \infty)$ d) $ A \epsilon[2,4]$ CASE STUDY	1
	Assume the speed of the train as	The fuel cost per hour for running a train is prop to the square of the speed it generates in km per the fuel costs \gtrless 48 per hour at speed 16 km per and the fixed charges to run the train amount to 1200 per hour. s <i>v</i> km/h.	er hour. If hour

	Based on the given information, a	answer the following questions.	
46.	Given that the fuel cost per hour is k times the square of the speed the train generates in km/h, the value of k is:		1
	a) $\frac{16}{3}$ c) 3	b) $\frac{1}{3}$ d) $\frac{3}{16}$	
47.	,	re of 500 km, then the total cost of running	1
	a) $\frac{15}{16}v + \frac{600000}{v}$	b) $\frac{375}{4}v + \frac{600000}{v}$	
	C) $\frac{5}{16}v^2 + \frac{150000}{v}$	d) $\frac{3}{16}v + \frac{6000}{v}$	
48.	The most economical speed to ru	In the train is:	1
	a) 18km/h c) 80km/h	b) 5km/h d) 40km/h	
49.	The fuel cost for the train to travel 500km at the most economical speed is:		1
	a) ₹ 3750 c) ₹ 7500	b) ₹750 d) ₹75000	
50.	The total cost of the train to travel 500km at the most economical speed is:		1
	a) ₹ 3750 c) ₹ 7500	b) ₹ 75000 d) ₹ 15000	
