Applied Mathematics (241)

Marking Scheme
Class XII (2023-24)

Section A
 (1 Mark each)

Q-1 Option (c) Here $\mathrm{X}<0$ and $\mathrm{Y}>0$, hence $-70 \bmod 13$ is $8 \because 8>0$.
Q-2 Option (b) $x \in(-\infty,-2)$

$$
\begin{aligned}
& \frac{x+1}{x+2} \geq 1 \Rightarrow \frac{x+1}{x+2}-1 \geq 0 \\
& \Rightarrow \frac{x+1-x-2}{x+2} \geq 0 \\
& \Rightarrow \frac{-1}{x+2} \geq 0 \Rightarrow \mathrm{x}+2<0\left[\because \frac{a}{b}>0 \text { and } a<0 \Rightarrow b<0\right] \\
& \Rightarrow x<-2
\end{aligned}
$$

Q-3 Option (b) \bar{x} is a statistic 1 Mark
Q-4 Option (a) 1 Mark
Q-5 Option (a)
Let man's rate upstream $=x \mathrm{~km} / \mathrm{h}$
Let man's rate downstream $=2 \mathrm{xkm} / \mathrm{h}$
Hence, Man's rate in still water $=\frac{1}{2}(x+2 x)=\frac{3 x}{2} \mathrm{~km} / \mathrm{h}$
Therefore $\frac{3 x}{2}=6 \Rightarrow x=4 \mathrm{~km} / \mathrm{h}$
Man's rate downstream $=8 \mathrm{~km} / \mathrm{h}$
Hence rate of stream $\frac{1}{2}(8-4)=2 \mathrm{~km} / \mathrm{h} \quad 1$ Mark
Q-6 Option (d)

x_{i}	Sample Event	$\mathrm{P}\left(x_{i}\right)=p_{i}$	$x_{i} p_{i}$
0	TT	$\frac{1}{4}$	0
1	HT,TH	$\frac{1}{2}$	$\frac{1}{2}$
2	HH	$\frac{1}{4}$	$\frac{1}{2}$

Mathematical Expectation $\mathrm{E}(\mathrm{X})=\sum p_{i} x_{i}=1$
1 Mark
Q-7 Option $(\mathrm{c}) 3^{1} \equiv 3(\bmod 7) \Rightarrow 3^{2} \equiv 3 \times 3=2(\bmod 7)$
$\Rightarrow 3^{3}=3 \times 2=6=-1(\bmod 7)$
$\Rightarrow\left(3^{3}\right)^{16}=(-1)^{16}(\bmod 7)$
$\Rightarrow\left(3^{3}\right)^{16}=1(\bmod 7) \Rightarrow\left(3^{3}\right)^{16} \times 3^{2}=1 \times 3^{2}(\bmod 7)$
$\Rightarrow 3^{50}=2(\bmod 7)$
1 Mark

Q-8 Option (a) $\mathrm{i}=\frac{r}{400}$.

$$
\mathrm{P}=\frac{R}{i} \Rightarrow 24000=\frac{300 \times 400}{r} \Rightarrow r=\frac{120}{24}=5 \%
$$

1 Mark

Q-9 Option (b) $\int \frac{\log x}{x} d x$
Put $\log \mathrm{x}=\mathrm{t}$
Differentiating $\frac{1}{x} d x=d t$
Hence, $\int \frac{\log x}{x} d x=\int t d t=\frac{t^{2}}{2}+C=\frac{(\log x)^{2}}{2}+C \quad 1$ Mark
Q-10 Option (d) 1 Mark
Q-11 Option (b) 1 mark
$\mathrm{D}=\frac{C-S}{n} \Rightarrow D=\frac{30,000-4000}{4}=\frac{26000}{4}=6500$
Hence, the depreciation is ₹ 6500
1 Mark

Q-12. Option (c)

$$
\begin{aligned}
& r_{e f f}=\left[\left(1+\frac{r}{m}\right)^{m}-1\right] \times 100 \\
& r_{e f f}=\left[(1.03)^{2}-1\right] \times 100=(1.0609-1) \times 100=6.09 \%
\end{aligned}
$$

Q-13 Option (b)
$\mathrm{CAGR}=\left[\left(\frac{E V}{S V}\right)^{\frac{1}{5}}-1\right] \times 100$

$$
\begin{aligned}
& =\left[\left(\frac{32000}{20000}\right)^{\frac{1}{5}}-1\right] \times 100 \\
& =\left[(1.6)^{\frac{1}{5}}-1\right] \times 100 \\
& =[1.098-1] \times 100=0.098 \times 100=9.8 \%
\end{aligned}
$$

Q-14 Option (c) $\mathrm{x} \frac{d y}{d x}+2 y=x^{3}$

$$
\begin{aligned}
& \frac{d y}{d x}+\frac{2 y}{x}=\frac{x^{3}}{x} \\
& \frac{d y}{d x}+\frac{2 y}{x}=x^{2} \\
& \text { I.F }=e^{\int \frac{2}{x}}=e^{2 \ln x}=e^{\ln x^{2}}=x^{2}
\end{aligned}
$$

1 Mark

Q-16 Option (a)
1 Mark

$$
\begin{aligned}
& 3 \mathrm{P}(\mathrm{X}=2)=2 \mathrm{P}(\mathrm{X}=1) \\
& \Rightarrow 3 \frac{m^{2} e^{-m}}{2!}=2 \frac{m e^{-m}}{1!} \Rightarrow m=\frac{4}{3}
\end{aligned}
$$

Q-17 Option (c)

1 Mark
Q-18 Option (d)

$$
\mathrm{Z}=\frac{x-\mu}{\sigma} \Rightarrow 5=\frac{x-12}{4} \Rightarrow x=32
$$

1 Mark

Q-19 Option(c)

Assertion : $\mathrm{P}(\mathrm{x})=41+24 \mathrm{x}-8 \mathrm{x}^{2}$

$$
\begin{aligned}
& P^{\prime}(x)=24-16 x \\
& P^{\prime}(x)=0 \Rightarrow 24-16 x=0 \Rightarrow x=\frac{24}{16}=\frac{3}{2} \\
& P^{\prime \prime}(x)=-16<0 \Rightarrow x=\frac{3}{2} \text { is a point of maxima }
\end{aligned}
$$

$$
\text { Max Profit }=P=41+24 \times \frac{3}{2}-8 \times \frac{9}{4}=41+36-18=59
$$

Assertion is true but Reason is false, for Maximum
Profit at $x=a, P^{\prime}(a)=0$ and $P^{\prime \prime}(a)<0$.
1 Mark
Q-20 Option (a) Both A and R are true and R is the correct explanation of A

Section B
 (2 Marks each)

Q-21 Let rate of interest be $\mathrm{r} \%$ per annum, then $\mathrm{i}=\frac{r}{200}$
Given $\mathrm{R}=₹ 1500$ and $\mathrm{P}=$ Rs 20,000

$$
\begin{array}{ll}
\mathrm{P}=\frac{R}{i} \Rightarrow i=\frac{R}{P}=\frac{1500}{20000} & 1 \text { Mark } \\
\Rightarrow \frac{r}{200}=\frac{1500}{20000} \Rightarrow r=15 \% & 1 \text { Mark }
\end{array}
$$

$\mathrm{Q}-22 \mathrm{~A}=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]$

$$
\begin{array}{ll}
A^{2}=A \cdot A=\left[\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right]=\left[\begin{array}{cc}
8 & -8 \\
-8 & 8
\end{array}\right] & \text { 1 Mark } \\
A^{2}=p A \Rightarrow\left[\begin{array}{cc}
8 & -8 \\
-8 & 8
\end{array}\right]=p\left[\begin{array}{cc}
2 & -2 \\
-2 & 2
\end{array}\right] \\
\Rightarrow\left[\begin{array}{cc}
8 & -8 \\
-8 & 8
\end{array}\right]=\left[\begin{array}{cc}
2 p & -2 p \\
-2 p & 2 p
\end{array}\right] \Rightarrow p=4 & \text { 1 Mark }
\end{array}
$$

OR

$$
\left[\begin{array}{ccc}
0 & a & 3 \\
2 & b & -1 \\
c & 1 & 0
\end{array}\right]=-\left[\begin{array}{ccc}
0 & 2 & c \\
a & b & 1 \\
3 & -1 & 0
\end{array}\right]
$$

1/2 Mark

Comparing $\mathrm{a}=-2 ; \mathrm{b}=-\mathrm{b} \Rightarrow 2 b=0 \Rightarrow b=0$ and $c=-3$
1 $1 / 2$ Mark
Hence $\mathrm{a}+\mathrm{b}+\mathrm{c}=-2+0-3=-5$.
½ Mark

Q-23 Let ' x ' hectares and ' y ' hectares of land be allocated to crop A and Crop B

$$
\operatorname{Max} Z=8000 x+9500 y . \quad 1 / 2 \text { Mark }
$$

Subject to $x+y \leq 10 ; 2 x+y \leq 50 ; x \geq 0$ and $y \geq 0$
$11 / 2$ mark
Q-24 Let speed of boat and stream be $\mathrm{xkm} / \mathrm{h}$ and $\mathrm{y} \mathrm{km} / \mathrm{h}$ respectively $(\mathrm{x}+\mathrm{y}) \times 5=25$
$(x-y) \times 5=15$
$\frac{1}{2}$ Mark
$\Rightarrow x+y=5$ and $x-y=3$
Solving, $x=4$ and $y=1$
So, speed of stream is $1 \mathrm{~km} / \mathrm{h}$
1/2 Mark

OR

When B runs 50 m A runs $40 \mathrm{~m} \quad 1 / 2$ Mark
When B runs $1 \mathrm{~m}, \mathrm{~A}$ runs $=\frac{40}{50}=\frac{4}{5} \quad 1 / 2$ Mark
When B runs $1000 \mathrm{~m}, \mathrm{~A}$ runs $=\frac{4}{5} \times 1000=800 \mathrm{~m} \quad 1 / 2$ Mark
Hence B beats A by $200 \mathrm{~m} \quad 1 / 2$ Mark
Q-25 Define Null hypothesis H_{0} alternate hypothesis H_{1} as follows:

$$
\begin{aligned}
& H_{0}: \mu=0.50 \mathrm{~mm} \\
& H_{1}: \mu=0.50 \mathrm{~mm}
\end{aligned}
$$

Thus a two-tailed test is applied under hypothesis H_{0}, we have

$$
t=\frac{\bar{x}-\mu}{s} \sqrt{n-1}=\frac{0.53-0.50}{0.03} \times 3=3 .
$$

Since the calculated value of t i.e. $\mathrm{t}_{\text {cal }}(=3)>\mathrm{t}_{\mathrm{tab}}(=2.262)$, the null hypothesis H_{0} can be rejected. Hence, we conclude that machine is not working properly. 1 Mark

Section C

(3 Marks each)
$\begin{aligned} \mathrm{Q}-26 \int \frac{x^{3}}{(x+2)} d x & =\left(\int x^{2}-2 x+4-\frac{8}{x+2}\right) d x & & 2 \text { Mark } \\ & =\frac{x^{3}}{3}-x^{2}+4 x-8 \log |x+2|+C . & & 1 \text { Mark }\end{aligned}$ (where C is an arbitrary constant of integration)

OR

$$
\int\left(x^{2}+1\right) \ln x d x
$$

Integrating by parts

$$
\begin{array}{lr}
\ln x\left(\frac{x^{3}}{3}+x\right)-\int \frac{1}{x}\left(\frac{x^{3}}{3}+x\right) d x . & 2 \text { mark } \\
\ln x\left(\frac{x^{3}}{3}+x\right)-\int\left(\frac{x^{2}}{3}+1\right) d x & \\
\ln x\left(\frac{x^{3}}{3}+x\right)-\left(\frac{x^{3}}{9}+x\right)+\mathrm{C} . & 1 \text { Mark }
\end{array}
$$

Q-27
Toy A. Toy B
$\left[\begin{array}{rr}7 & 10 \\ 8 & 6\end{array}\right] \quad$ Here Row 1 and Row 2 indicate Shopkeeper 1 and Shopkeeper 2
Cost Matrix $=\left[\begin{array}{l}50 \\ 75\end{array}\right]$
1 Mark

Amount $=\left[\begin{array}{cc}7 & 10 \\ 8 & 6\end{array}\right]\left[\begin{array}{l}50 \\ 75\end{array}\right]=\left[\begin{array}{c}350+750 \\ 400+450\end{array}\right]=\left[\begin{array}{c}1100 \\ 850\end{array}\right]$
Income of Shopkeeper P is ₹ 1100 and shopkeeper Q is ₹ 850
2 Marks
$\mathrm{Q}-28 \mathrm{f}(\mathrm{x})=2 x^{3}-9 x^{2}+12 x-5$
$f^{\prime}(x)=6 x^{2}-18 x+12=6\left(x^{2}-3 x+2\right)$
$f^{\prime}(x)=6(x-1)(x-2) \quad 1$ Mark
$f^{\prime}(x)=0 \Rightarrow x=1$ and $x=2$ are the critical points. $\quad 1 / 2$ Mark
The intervals are $(-\infty, 1) ;(1,2) ;(2, \infty) \quad 1 / 2$ Mark
Increasing in $(-\infty, 1] \cup[2, \infty), \quad$ Decreasing in $[1,2] \quad 1$ Mark
Q-29 Under pure competition

$$
\begin{array}{ll}
\quad p_{d}=p_{s} \\
\Rightarrow 16-x^{2}=2 x^{2}+4 & \\
\Rightarrow 3 x^{2}=12 \Rightarrow \mathrm{x}=2,-2 ; \text { since } \mathrm{x} \text { can't be -ve, so } \mathrm{x}=2 & 1 \text { Mark } \\
\text { When } x_{0}=2 ; p_{0}=12 & 1 / 2 \text { Mark } \\
\text { Hence, Consumer's surplus }=\int_{0}^{2} p_{d} d x-p_{0} x_{0} & 1 / 2 \text { Mark }
\end{array}
$$

$$
\begin{aligned}
& =\int_{0}^{2}\left(16-x^{2}\right) d x-12 \times 2 \\
& =16 / 3 \text { units }
\end{aligned}
$$

OR

$$
\begin{aligned}
& p_{d}=p_{s} \\
\Rightarrow & 56-x^{2}=8+\frac{x^{2}}{3} \\
\Rightarrow & \frac{4}{3} x^{2}=48 \Rightarrow x^{2}=36 \Rightarrow \mathrm{x}=6,-6 \text {; since } \mathrm{x} \text { can't be }-\mathrm{ve} \text {, so } \mathrm{x}=6
\end{aligned}
$$

When $x_{0}=6 ; p_{0}=20$
Hence, Producer's surplus $=p_{0} x_{0}-\int_{0}^{6} p_{s} d x$

1 Mark
1/2 Mark
½ Mark

1 Mark

Q-30 Here $\mathrm{P}=5,00,000 ; \mathrm{I}=2,00,000 ; \mathrm{EMI}=12,500$

$$
\mathrm{EMI}=\frac{P+I}{n}
$$

112 Mark
$12,500=\frac{5,00,000+2,00,000}{n} \Rightarrow \mathrm{n}=\frac{7,00,000}{12,500}=56$ months.
112 Mark

Q-31 Let Rs. R be set aside biannually for 10 years in order to have
₹ 500,000 after 10 years
Here $S=500,000$. $; \mathrm{n}=10 \times 2=20$

$$
\begin{array}{lr}
\mathrm{i}=\frac{5}{2 \times 100}=0.025 & 1 / 2 \text { Mark } \\
\mathrm{R}=\frac{i S}{(1+i)^{n}-1}=\frac{0.025 \times 500,000}{(1.025)^{20}-1}=\frac{12,500}{1.6386-}=19,574.07 . & 21 / 2 \text { Mark }
\end{array}
$$

Section D

(5 Marks each)
Q-32 Here $\mathrm{m}=0.4$

$$
\mathrm{P}(X=r)=\frac{e^{-m} \cdot m^{r}}{r!}=\frac{e^{-0.4} \times(0.4)^{r}}{r!}
$$

$$
=\frac{0.6703 \times(0.4)^{r}}{r!} \quad 1 \text { Mark }
$$

In 1000 pages error $=1000 \times \frac{0.6703 \times(0.4)^{r}}{r!} \quad 1 / 2$ Mark
For zero error $\mathrm{P}(X=0)=1000 \times \frac{e^{-m} \cdot m^{0}}{0!}=\frac{e^{-0.4} \times(0.4)^{0}}{0!}$

$$
=1000 \times 0.6703=670.3 \quad 11 / 2 \text { Mark }
$$

For one error $\mathrm{P}(X=1)=1000 \times \frac{e^{-m} \cdot m^{1}}{1!}=\frac{e^{-0.4} \times(0.4)^{1}}{1!}$

$$
=670.3 \times 0.4=268.12 \quad 2 \text { Mark }
$$

OR

Here $\mathrm{p}=\frac{1}{2}$ and $q=\frac{1}{2}$
$\mathrm{P}(\mathrm{X}=\mathrm{r})=\mathrm{C}(\mathrm{n}, \mathrm{r}) p^{r} q^{n-r}$
$1-\mathrm{P}(\mathrm{r}=0)>\frac{90}{100}$
1 Mark
$1-\mathrm{C}(\mathrm{n}, 0)\left(\frac{1}{2}\right)^{0}\left(\frac{1}{2}\right)^{n}>\frac{9}{10}$
$\Rightarrow \frac{n!}{0!(n-0)!}\left(\frac{1}{2}\right)^{n}<\frac{1}{10}$
2 Mark
$\Rightarrow\left(\frac{1}{2}\right)^{n}<\frac{1}{10} \Rightarrow 2^{n}>10 \Rightarrow n$ is 4 or more times $\quad 2$ Mark
Q-33 Let ' x ' and ' y ' be the number of units of items M and N respectively.
We have : $x \geq 0, y \geq 0$

$$
\begin{array}{ll}
x+2 y \leq 12 ; 2 x+y \leq 12 ; x+\frac{5}{4} y \geq 5 . & 11 / 2 \text { Mark } \\
\operatorname{Max} Z=600 \mathrm{x}+400 \mathrm{y} & 1 \text { Mark }
\end{array}
$$

Graph 1½ Mark

Corner Point	$\mathbf{Z}=\mathbf{6 0 0 x}+\mathbf{4 0 0 y}$
$\mathrm{E}:(5,0)$	3000
$\mathrm{C}:(6,0)$	3600
G $:(\mathbf{4 , 4})$	$\mathbf{4 0 0 0}$ (Maximum)
B $:(0,6)$	2400
F $:(0,4)$	1600

Hence maximum profit is ₹ 4000 when 4 units of each item M and N are produced. 1 Mark
Q-34. Let ' x ' units of product be produced and sold. As selling price of one unit is Rs 8 total revenue on ' x ' units $=$ Rs $8 x$
(i) Cost Function C(x) $=$ Fixed Cost $+25 \%$ of 8 x

$$
\begin{aligned}
& =24000+\frac{25}{100} \times 8 x \\
& =24000+2 \mathrm{x} .
\end{aligned}
$$

$11 / 2$ Mark
(ii) Revenue Function $=8 \mathrm{x}$

1 Mark
(iii) Breakeven Point $8 x=24000+2 x$

$$
x=4000
$$

112 Mark
(iv) Profit function $=R(x)-C(x)=6 x-24000$ 1 Mark

OR

Let x and y be the dimension of the printed pages then $\mathrm{x} . \mathrm{y}=180$.
A $=$ Area of the page $=(x+4)(y+5)$

$$
=x y+5 x+4 y+20
$$

$$
\begin{aligned}
& =180+5 x+4 \times\left(\frac{180}{x}\right)+20 \\
& =200+5 x+\frac{720}{x}
\end{aligned}
$$

For most economical dimension $\frac{d A}{d x}=0 \Rightarrow 5-\frac{720}{x^{2}}=0$.

$$
\Rightarrow x^{2}=144 \Rightarrow x=12
$$

Now $\frac{d^{2} A}{d x^{2}}=\frac{1440}{x^{3}}$

$$
\left(\frac{d^{2} A}{d x^{2}}\right)_{x=12}=\frac{1440}{12^{3}}>0 . \therefore A \text { is minimum }
$$

Hence, the most economical dimensions are 16 cm and 20 cm

$$
\begin{gathered}
\text { Q-35 } x+y+z=12 \\
2 x+3 y+3 z=33 \\
x-2 y+z=0
\end{gathered}
$$

$$
\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 3 & 3 \\
1 & -2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
12 \\
33 \\
0
\end{array}\right]
$$

$$
|\mathrm{A}|=3 \neq 0 \quad 1 / 2 \text { Mark }
$$

$$
\operatorname{adj} \mathrm{A}=\left[\begin{array}{ccc}
9 & -3 & 0 \\
1 & 0 & -1 \\
-7 & 3 & 1
\end{array}\right]
$$

$$
\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B} \Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{3}\left[\begin{array}{ccc}
9 & -3 & 0 \\
1 & 0 & -1 \\
-7 & 3 & 1
\end{array}\right]\left[\begin{array}{c}
12 \\
33 \\
0
\end{array}\right]
$$

$$
\mathrm{X}=\mathrm{A}^{-1} \mathrm{~B} \Rightarrow\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}
108-99+0 \\
12+0-0 \\
-84+99+0
\end{array}\right]=\frac{1}{3}\left[\begin{array}{c}
9 \\
12 \\
15
\end{array}\right]=\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]
$$

Hence $x=3, y=4, z=5$

Section E

(Case Studies Based Questions)

Q-36 Case Study - I

(i)

A + B fill the tank in 6 hrs
$\mathrm{B}+\mathrm{C}$ fill the tank in 10 hrs
$\mathrm{A}+\mathrm{C}$ fill the tank in $\frac{15}{2} \mathrm{hrs}$
$2(\mathrm{~A}+\mathrm{B}+\mathrm{C})=\frac{6 \times 10 \times \frac{15}{2}}{6 \times 10+6 \times \frac{15}{2}+10 \times \frac{15}{2}}=\frac{450}{60+45+75}=\frac{450}{180}=\frac{5}{2} \mathrm{hrs}$
Hence A, B and C together will fill the tank in 5 Hrs
(ii) A will in $[(\mathrm{A}+\mathrm{B}+\mathrm{C})-(\mathrm{B}+\mathrm{C})]=\frac{10 \times 5}{10-5}=10 \mathrm{hrs}$
(iii) B will fill in $\frac{\frac{15}{2} \times 5}{\frac{15}{2}-5}=15 \mathrm{hrs}$

1 Mark

OR

C will fill in $\frac{5 \times 6}{6-5}=30 \mathrm{hrs}$
Q-37 Case Study - II

x_{i}	0	1	2	3	4	5
$\mathrm{P}\left(\mathrm{X}=x_{i}\right)$	0.2	k	2 k	2 k	0	0

(i) \quad Since $\sum P=1 \Rightarrow 0.2+k+2 k+2 k=1 \Rightarrow 0.2+5 k=1 \Rightarrow 5 k=0.8$

$$
\Rightarrow \mathrm{k}=\frac{4}{25}
$$

(ii) $\mathrm{P}(\mathrm{X}=2)=2 \mathrm{k}=\frac{8}{25}$

1 1 2 2 Mark
1 Mark
(iii) $\quad \mathrm{P}(\mathrm{X} \geq 2)=4 k=\frac{16}{25}$

1 $1 / 2$ Mark

$$
\mathrm{P}(X \leq 2)=0.2+3 \mathrm{k}=\frac{17}{25}
$$

Q-38 Case Study - III

Year	Y	X=Year -2003	X 2	XY
2001	160	-2	4	-320
2002	185	-1	1	-185
2003	220	0	0	0
2004	300	1	1	300
2005	510	2	4	1020
	1375		10	815

2 Marks for table
$\mathrm{a}=\frac{\sum Y}{n}=\frac{1375}{5}=275$
1/2 Mark
$\mathrm{b}=\frac{\sum X Y}{\sum X^{2}}=\frac{815}{10}=81.5$
1/2 Mark
$Y_{c}=a+b X$
$\mathrm{Y}_{\mathrm{c}}=275+81.5 \mathrm{X}$
The estimated value for 2008 will be $275+81.5 \times 5=275+407.5=682.51$ Mark

OR

Year	Rainfall(in cm)	3 years moving total	3 years moving average
2001	1.2		
2002	1.9	5.1	1.70
2003	2	5.3	1.77
2004	1.4	5.5	1.83
2005	2.1	4.8	1.60
2006	1.3	5.2	1.73
2007	1.8	4.2	1.40
2008	1.1	4.2	1.40
2009	1.3		

112 Marks for table

212 Marks for graph

