मृद्रित पृष्ठों की संख्या : 11 अनुक्रमाक .. नाम 151 346 (BV) 2023 भौतिक विज्ञान ।पूर्णांक : 70 समय : तीन घण्टे 15 मिनट। निर्देश : प्रारम्भ के 15 मिनट परीक्षार्थियों को प्रश्न-पत्र पढ़ने के लिए निर्धारित हैं। (i) **सभी** प्रश्न अनिवार्य हैं । (ii) (iii) इस प्रश्न-पत्र में **पाँच** खण्ड हैं ... खण्ड अ, खण्ड **ब**, खण्ड स, खण्ड द और खण्ड य / खण्ड अ बहविकल्पीय है तथा प्रत्येक प्रश्न का 1 अंक है । खण्ड ब अति लघु-उत्तरीय है तथा प्रत्येक प्रश्न का 1 अंक है । (v) खण्ड स लघ-उत्तरीय प्रकार-1 का है तथा प्रत्येक प्रश्न के 2 अंक हैं। (vii) खण्ड द लघु-उत्तरीय प्रकार-11 का है तथा प्रत्येक प्रश्न के 3 अंक हैं । (viii) **खण्ड य वि**स्तृत-उत्तरीय है । प्रत्येक प्रश्न के 5 अंक हैं । इस खण्ड के सभी चारों प्रश्नों में आन्तरिक विकल्प का चयन प्रदान किया गया है। ऐसे प्रश्नों में आपको दिए गए चयन में से केवल एक प्रश्न ही करना हैं / खण्ड अ वैद्युत फ्लक्स का मात्रक है : 1 (क) 1. न्यूटन $\times \text{ मी}^2 \times$ कूलॉम (Nm²C) (ii) न्यूटन $\times \text{ H}^2$ /कूलॉम (Nm²C⁻¹) (i) (iii) वोलट/मी (Vm⁻¹) (iv) न्यूटन \times मी/कूलॉम 2 (NmC $^{-2}$) चल-कुण्डली धारामापी की सुग्राहिता में वृद्धि की जा सकती है : 1 कुण्डली का क्षेत्रफल घटाकर (i) कुण्डली में फेरों की संख्या घटाकर (ii) क्ण्डली का क्षेत्रफल बढ़ाकर (iii) चुम्बकीय क्षेत्र का मान घटाकर (iv) 1 P.T.O. https://www.upboardonline.com 346 (BV) | | (1) | एक उ
होंगे: | | दाशक बायस एव | पश्चादाशक बायस का दशा म प्रातराघ क्रमशः | 1 | | | |-------|-------------------|---|---|-----------------|---|---|--|--| | | | (i) | अनन्त एवं शून्य | (ii) | परिमित एवं शून्य | - | | | | | | (iii) | • | (iv) | | | | | | | (-) | | • | | | _ | | | | | (ঘ) | | तरंगों के सम्बन्ध में सत्य | 7 | | 1 | | | | | | (i) | ये विद्युत्-चुम्बकीय तरा | रे हैं। | | | | | | | | (ii) | ये यांत्रिक तरंगें हैं। | | <u>. A. C W 2.</u> | | | | | | | (iv) | इन तरंगों का तरंगदैर्ध्य
द्रव्य तरंगों का वेग प्रक | | | | | | | | | (1V) | प्रज्य तरना का वन प्रक | शिकावशक अप | । बर हाता ह । | | | | | | (ङ) | (ङ) हाइड्रोजन परमाणु की द्वितीय कक्षा में इलेक्ट्रॉन का कोणीय संवेग है : | | | | | | | | | | (i) | 1·05 × 10 ⁻³⁴ जूल-से | | | | | | | | | | 1·05 × 10 ⁻³⁶ जूल-से | | | | | | | | | | 2·1 × 10 ⁻³⁴ जूल-से | | | | | | | | | (iv) | 2·1 × 10 ^{−31} जूल-से | | | | | | | | (च) | | वायु में रखे किसी पतले उत्तल लेंस की फोकस दूरी 10 सेमी है। लेंस के प्रथम फोकस से एक | | | | | | | | | | वस्तु को 5 सेमी की दूरी पर रखा गया है। द्वितीय फोकस से प्रतिबिम्ब की दूरी होगी: | | | | | | | | | (i) | 20 सेमी
30 सेमी | (i j.) | 15 सेमी
25 सेमी | | | | | | | (iii) | 30 सना | (iv) | 25 समा | | | | | | | | | खण्ड ब | | | | | | 2. | (क) | NOR द्वार का प्रतीक (चिह्न) बनाइए और इसके निर्गत के लिए सत्यता सारणी बनाइए । | | | | | | | | | (ख) | फोटॉन के संवेग का सूत्र लिखिए। | | | | | | | | | (11) | | | | | | | | | | (ग) | नाभिकीय बम एवं नाभिकीय रिऐक्टर में होने वाली शृंखला अभिक्रियाओं में अन्तर लिखिए । | | | | | | | | | (ঘ) | | | | | | | | | | | $E_y = 60 \sin{(500 x - 1.5 \times 10^{11} t)}$ वोल्ट/मी है। तरंग के चुम्बकीय क्षेत्र का समीकरण | | | | | | | | | | लिखिए | ξ [| | | 1 | | | | | (ङ) | and thing ! | | | | | | | | | (0) | | | | | | | | | | (च) | एक 1.5 वोल्ट विद्युत् वाहक बल वाले सेल का आन्तरिक प्रतिरोध 0.1 ओम है । सेल को | | | | | | | | | | 2∙9 ओ | म के बाह्य प्रतिरोध से जे | ड़ने पर, सेल के | सिरों पर विभवान्तर कितना होगा ? | 1 | | | | 16 | (B \/) | | | 2 | V , | • | | | | 940 (| (BV) | | | 2 | | | | | ## खण्ड स | 3. | (क) | नाभिक की बंधन-ऊर्जा से क्या तात्पर्य है ? यदि किसी नाभिक के लिए द्रव्यमान क्षति 10^{-6} किया हो, तो उसकी बंधन-ऊर्जा इलेक्ट्रॉन वोल्ट में ज्ञात कीजिए। | 2 | |------|---------|--|------| | | (ख) | ऐम्पियर के परिपथीय नियम के आधार पर, अनन्त लम्बाई के सीधे धारावाही चालक द्वारा
उत्पन्न चुम्बकीय क्षेत्र का व्यंजक ज्ञात कीजिए। | 2 | | | (ग) | समस्थानिकीय एवं समभारिक नाभिकों की परिभाषा दीजिए तथा इनके अन्तर का उल्लेख
कीजिए। | 2 | | | (ঘ) | 2·14 इलेक्ट्रॉन वोल्ट कार्यफलन वाले धातु पृष्ठ पर आपतित प्रकाश का तरंगदैर्घ्य 5000 Å
है । उत्सर्जित प्रकाशिक इलेक्ट्रॉनों की अधिकतम गतिज ऊर्जा एवं अधिकतम वेग ज्ञात
कीजिए । | 2 | | | | खण्ड द | | | 4. | (क) | वैद्युत द्विध्रुव तथा द्विध्रुव आघूर्ण को परिभाषित कीजिए। 2×10^{-8} कू-मी द्विध्रुव आघूर्ण का
वैद्युत द्विध्रुव 2×10^5 वोल्ट/मी के एकसमान विद्युत्-क्षेत्र से 30° पर झुका है। द्विध्रुव की
स्थितिज ऊर्जा एवं इस पर कार्यरत बल-युग्म का आघूर्ण ज्ञात कीजिए। | 3 | | | (ख) | ट्रान्सफॉर्मर क्या है ? ट्रान्सफॉर्मर में होने वाली ऊर्जा हानियों का विवरण दीजिए । | 3 | | | (ग) | विद्युत्-चुम्बकीय तरंगों की अनुप्रस्थ प्रकृति को समझाइए । रेडियो तरंगों के उपयोगों का संक्षिप्त विवरण दीजिए । | 3 | | | (ঘ) | उभयनिष्ठ उत्सर्जक विन्यास में ट्रांजिस्टर प्रवर्धक का परिपथ आरेख खींचिए तथा इसकी क्रियाविधि संक्षेप में समझाइए । | 3 | | | (ङ) | धातु के दो गोलों के व्यास 6 सेमी तथा 4 सेमी हैं.। इन्हें समान विभव तक आवेशित किया
गया है। गोलों के आवेश के पृष्ठ-घनत्वों का अनुपात ज्ञात कीजिए। | 3 | | 5. | (क) | किसी पतले लेंस के लिए लेंस मेकर सूत्र लिखिए । इसके आधार पर, लेंस के पदार्थ के अपवर्तनांक तथा लेंस पृष्ठों की वक्रता त्रिज्याओं के इसकी फोकस दूरी पर प्रभाव की विवेचना कीजिए । | 3 | | | (ख) | स्वप्रेरण गुणांक एवं अन्योन्य प्रेरण गुणांक की परिभाषा लिखिए । 5 हेनरी स्वप्रेरकत्व वाली
कुण्डली में 5 ऐम्पियर की धारा 0·1 से. में शून्य हो जाती है । कुण्डली में प्रेरित विद्युत् वाहक | 3 | | 0.44 | e (B)/\ | बल ज्ञात कीजिए ।
3 P.T | ۲.O. | | 34 | 6 (BV) | _ | | - (ग) किसी चालक की धारिता में वृद्धि कैसे की जा सकती है ? एक समान्तर पट्ट वायु संधारित्र के प्लेटों की त्रिज्या 3 × 10⁻² मी तथा धारिता 1 मी त्रिज्या वाले आवेशित गोले की धारिता के बराबर है । संधारित्र के प्लेटों के बीच की दूरी ज्ञात कीजिए । - (घ) किसी चालक के प्रतिरोध एवं प्रतिरोधकता का ताप से सम्बन्ध लिखिए । प्रतिरोध के ताप गुणांक को परिभाषित कीजिए तथा इसका मात्रक लिखिए । ### अथवा - ्रिकाश-विद्युत् प्रभाव क्या है ? किसी प्रकाशसंवेदी सतह के लिए दे**हली आ**वृत्ति 3.3×10^{14} हर्ट्ज़ है । यदि आपितत प्रकाश की आवृत्ति 8.2×10^{14} हर्ट्ज़ हो जाए, तो निरोधी विभव की गणना कीजिए तथा सतह के कार्यफलन का मान भी बताइए । - (ङ) बोर के परमाणु-प्रतिरूप (मॉडल) की संकल्पनाओं (अभिगृहीत) को लिखिए । हाइड्रोजन-स्पेक्ट्रम में लाइमन, बामर एवं पाशन श्रेणी की प्रथम दो रेखाओं हेतु ऊर्जा स्तर आरेख खींचिए । ### खण्ड य 6. स्थिर-विद्युतिकी में गाउस का प्रमेय लिखिए । समिवभव पृष्ठ से क्या तात्पर्य है ? समान आवेश-घनत्व की दो विद्युत्-रोधी प्लेटें चित्रानुसार रखी हैं । बिन्दु P एवं Q पर विद्युत्-क्षेत्र की तीव्रता ज्ञात कीजिए । #### अथवा - ्रिवभवमापी का सिद्धांत समझाइए । यह वोल्टमीटर से क्यों श्रेष्ठ होता है ? विभवमापी द्वारा दो सेलों के विद्युत् वाहक बल की तुलना आप कैसे करेंगे ? प्रासंगिक परिपथ आरेख खींचकर समझाइए । - 7. हाइगेन्स की द्वितीयक तरंगिकाओं का सिद्धांत लिखकर इसकी सफलता एवं विफलता पर प्रकाश डालिए। उत्तल लेंस के फोकस पर रखे बिन्दु प्रकाश स्रोत के कारण लेंस से निर्गत प्रकाश के तरंगाग्र का. निरूपण कीजिए। ### अथवा व्यतिकरण का अर्थ क्या है ? व्यतिकारी तरंगों $y_1=a_1\sin\omega t$ एवं $y_2=a_2\sin(\omega t+\phi)$ के व्यतिकरण के कारण उत्पन्न परिणामी तरंग की तीव्रता का सूत्र व्युत्पन्न कीजिए । यदि $a_1=5$ सेमी और $a_2=3$ सेमी हो, तो परिणामी तरंग की अधिकतम एवं न्यूनतम तीव्रताओं का अनुपात ज्ञात कीजिए । 5 3 3 3 3 5 5 5 8. प्रकाश उत्सर्जक डायोड क्या हैं ? प्रकाश उत्सर्जक डायोड के कार्यकारी सिद्धांत एवं क्रियाविधि का वर्णन कीजिए । ये पारम्परिक फिलामेन्ट लैम्पों की तुलना में क्यों अधिक उपयोगी हैं ? ### अथवा खगोलीय दूरदर्शी का किरण आरेख बनाइए जबिक अन्तिम प्रतिबिम्ब अनन्त पर बनता है । इस दूरदर्शी से 2 किमी दूर स्थित 100 मी ऊँची इमारत को देखा जाता है । दूरदर्शी के अभिदृश्यक द्वारा बने प्रतिबिम्ब की ऊँचाई क्या होगी ? अभिदृश्यक की फोकस दूरी 150 सेमी है । 9. बायो-सावर्ट का नियम लिखिए । किसी धारावाही वृत्तीय पाश के केन्द्र पर उत्पन्न चुम्बकीय क्षेत्र हेतु व्यंजक प्राप्त कीजिए । इस धारा पाश के चुम्बकीय आधूर्ण का सूत्र भी लिखिए । #### अथवा प्रत्यावर्ती वोल्टता के वर्ग-माध्य-मूल मान एवं शिखर मान में सम्बन्ध लिखिए । दिए गए परिपथ में प्रतिरोध के सिरों पर प्रेरणिक प्रतिघात, धारिता प्रतिघात तथा विभवान्तर ज्ञात कीजिए । ## भौतिक नियतांक : प्रकाश की चाल (c) = 3×10^8 मी/से प्लांक नियतांक (h) = 6.6×10^{-34} जूल-से इलेक्ट्रॉन का द्रव्यमान $= 9.1 \times 10^{-31}$ किग्रा निर्वात की विद्युत्शीलता ($\epsilon_{\rm o}$) = $8.85 \times 10^{-12}\,{\rm C^2/Nm^2}$ 1 eV = $1.6 \times 10^{-19} \text{ Jec}$ P.T.O. 5 5 5 5 # (English Version) ### Instructions: - First 15 minutes are allotted for the candidates to read the question paper. (i) - All the questions are compulsory. (ii) - This question paper consists of five Sections Section A, Section B, Section C, (iii) Section D and Section E. - **Section A** is of multiple choice type and each question carries 1 mark. (iv) - Section B is of very short-answer type and each question carries 1 mark. (v) - Section C is of short-answer type-I and each question carries 2 marks. (vi) - Section D is of short-answer type-II and each question carries 3 marks. (vii) - Section E is of long-answer type. Each question carries 5 marks. All four questions of (viii) this section have been given internal choice. You have to do only one question from the choice given in the question. ## Section A | 6 | ť | |---|---| | | | | | | | | | | | | | 1 | 1 | | tion in forward and reverse bias respectively | | | netic field | | | il | | | rns in the coil | | | pil | | | nometer can be increased by: | 1 | | $ m Im C^{-2}$ | | | $1 \text{m}^2 \text{C}^{-1}$ | | | | 1 | | | | | | | | | (d) | True statement with reference to matter waves is: | | | | | 1 | | |----|------------|---|--|---------|-------|-----|-----|--| | | | (i) | These are electromagnetic waves. | | | | | | | | | (ii) | These are mechanical waves. | | | | | | | | | (iii) | Wavelength of these waves does not depend on charge of the particle. | | | | | | | | | (iv) Velocity of matter waves is equal to velocity of light. | | | | | | | | | (e) | Angular momentum of electron in the second orbit of hydrogen ator | | | | | 1 | | | | | (i) | $1.05 \times 10^{-34} \text{ J-s}$ | | | | | | | | | (ii) | $1.05 \times 10^{-36} \text{ J-s}$ | | | | | | | | | (iii) | $2\cdot1\times10^{-34}~J\text{-s}$ | | | | | | | | | (iv) | $2 \cdot 1 \times 10^{-31} \text{ J-s}$ | | | | | | | | (f) | Focal length of a thin convex lens placed in air is 10 cm. An object is placed at a distance of 5 cm from the first focus. The distance of the image from the second focus is: | | | | | 1 | | | | | (i) | 20 cm | (ii) | 15 cm | | | | | | | (iii) | 30 cm | (iv) | 25 cm | | | | | | | | | Section | В | | | | | 2. | (a) | Draw symbol of NOR gate and draw truth table for its output. | | | | | | | | | (b) | Writ | Write the formula for the momentum of photon. | | | | | | | | (c) | Write down the difference between the chain reaction occurring in nuclear bombs and nuclear reactors. | | | | | 1 | | | | (d) | $E_y = 60 \sin (500x - 1.5 \times 10^{11}t) \text{ V/m}$. Write equation for the magnetic field of the wave. | | | | | 1 | | | | (e) | Write down the phase difference between voltage and current in a pure inductive alternating circuit. | | | | | 1 | | | | (f) | e.m.f. of a cell is 1.5 volt and internal resistance is 0.1 Ω . On connecting the cell with an external resistance of 2.9 Ω , what will be potential difference at the terminals of the cell? | | | | | 1 | | | 34 | 6 (BV) | | | 7 | | P.T | .O. | | 2. # Section C | 3. | (a) | What is meant by the binding energy of a nucleus? If mass defect for nuclei is 10 ⁻⁶ kg, then find its binding energy in electron volt. | | |----|--------------|--|---| | | (b) | On the basis of Ampere's circuital law, find the expression for the magnetic field produced by an infinitely long straight current carrying conductor. | 2 | | | (c) | Give the definition of isotopic and isobaric nuclei and mention the difference between them. | 2 | | | (d) | The wavelength of light incident on a metal surface of work function 2.14 eV is 5000 Å. Find the maximum kinetic energy and the maximum velocity of the emitted photoelectrons. | 2 | | | | Section D | | | 4. | (a) | Define electric dipole and dipole moment. An electric dipole of dipole moment 2×10^{-8} C-m is inclined at an angle of 30° from a uniform electric field of 2×10^5 V/m. Find the potential energy of the dipole and the moment of the couple acting on it. https://www.upboardonline.com | 3 | | | (b) | What is a transformer? Describe the energy losses occurring in a transformer. | 3 | | | (c) | Explain transverse nature of electromagnetic waves. Give a brief description of the uses of radio waves. | 3 | | | (d) | Draw a circuit diagram of a transistor amplifier in common emitter configuration and explain its working in brief. | 3 | | | (e) | Diameter of two spheres of metal are 6 cm and 4 cm. They are charged to the same potential. Find out the ratio of the surface densities of charge on the sphere. | 3 | | 5. | (a) | Write lens maker's formula for a thin lens. On its basis, discuss the effect of refractive index of lens material and radius of curvature of lens surfaces on its focal length. | | | | (b) | Write down the definition of coefficient of self-induction and coefficient of mutual induction. Current of 5 A decreases to zero in 0·1 s in a coil of 5 H self-inductance. Find out induced e.m.f. produced in the coil. | 3 | (c) How can the capacity of a conductor be increased? Radius of the plates of a parallel plate air capacitor is 3 × 10⁻² m and the capacitance is equal to the capacitance of a charged sphere of radius 1 m. Find the distance between the plates of the capacitor. 3 (d) Give the relationship of temperature with the resistance and resistivity of a conductor. Define temperature coefficient of the resistance and give its unit. 3 ### OR What is photoelectric effect? For any photosensitive surface threshold frequency is 3.3×10^{14} Hz. If frequency of incident light becomes 8.2×10^{14} Hz, then calculate the stopping potential and give the value of work function of the surface also. 3 (e) State the postulates of Bohr's atomic model. Draw energy level diagram for the first two lines of Lyman, Balmer and Paschen series in the hydrogen spectrum. 3 ## Section E 6. State Gauss's theorem of electrostatics. What is the meaning of equipotential surface? Two insulator plates having equal charge density are placed as shown in the figure. Find the electric field intensity at points P and Q. 5 OR Explain the principle of potentiometer. Why it is superior to a voltmeter? How will you compare e.m.f. of two cells by potentiometer? Explain by drawing relevant circuit diagram. 5 346 (BV) Stating Huygens' principle of secondary wavelets throw light on its success and failure. Draw wavefront of light emerging from a convex lens due to a point source of light placed on its focus. OR 5 5 5 ō 5 5 What is the meaning of interference? Derive expression for the intensity of the resulting wave due to interference of the waves $y_1 = a_1 \sin \omega t$ and $y_2 = a_2 \sin (\omega t + \phi)$. If $a_1 = 5$ cm and $a_2 = 3$ cm, then find the ratio of maximum and minimum intensities of the resulting wave. 8. What are light emitting diodes? Describe the principle and working of a light emitting diode. Why are they more useful than traditional filament lamps? OR Draw a ray diagram for an astronomical telescope when final image is formed at infinity. A building of height 100 m and at a distance of 2 km is seen through this telescope. Then what will be the height of the image formed by the objective of the telescope? Focal length of the objective is 150 cm. 9. State Biot-Savart law. Find the expression for the magnetic field due to a current carrying circular loop at its centre. Also write down the formula for the magnetic moment of this current loop. OR Write down the relationship between root-mean-square value and peak value of an alternating voltage. In the given circuit, find the value of inductive reactance, capacitive reactance and potential difference between the ends of the resistance. ## Physical constants: Speed of light (c) = $$3 \times 10^8$$ m/s Planck's constant (h) = $$6.6 \times 10^{-34}$$ J-s Mass of electron = $$9.1 \times 10^{-31}$$ kg Electrical permittivity of free space ($$\epsilon_0$$) = $8.85 \times 10^{-12} \text{ C}^2/\text{Nm}^2$ $$1 \text{ eV}$$ = $1.6 \times 10^{-19} \text{ J}$ https://www.upboardonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें, Paytm or Google Pay से