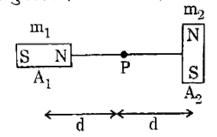

अनुक्रमांक							मुद्रित पृष्ठों की संख्या : 11		
_{नाम} . 15			4-,	••••••••••••••••••••••••••••••••••	••••	. .	346	(FT	·)
			4.	2	024	Ļ			
				भौतिव	ह वि	ज्ञान			
समय	: तीन	ा घण्टे :	15 मिनट]					[पूर्णांक :	70
(viii	प्रारम्भ सभी इस प्र खण्ड खण्ड खण्ड खण्ड खण्ड खण्ड खण्ड खण्ड	प्रश्न अ श्न-पत्र अबहु ब अति स लघु ह द लघु ह य वि ल्प का	त मिनट परीक्षार्थियों गिनवार्य हैं। में पाँच खण्ड हैं— विकल्पीय है तथा। ते लघु-उत्तरीय है त पु-उत्तरीय प्रकार-1 व पु-उत्तरीय प्रकार-11 व प्रस्तृत-उत्तरीय हैं। चयन प्रदान किया।	- खण्ड अ, खण्ड प्रत्येक प्रश्न का 1 था प्रत्येक प्रश्न व का है तथा प्रत्येक का है तथा प्रत्येक प्रत्येक प्रश्न के 1 गया है । ऐसे प्रश्न	ह ब, र अंक का 1 अ प्रश्न र प्रश्न र	खण्ड स, खण्ड द है। भंक है। के2 अंक हैं। के3 अंक हैं। क हैं। इस खण्ड	के सभी चारों प्रश		
_				खा	ण्ड अ			•	
1.	(ক)	कुल	त आवेश एक छोटे आवेश को घेरते हु लक्स होगा : 10 V × m 40 V × m		फ्ल क (ii)				1
	(ख)		विशील आवेश उत केवल विद्युत क्षेः केवल चुम्बकीय विद्युत एवं चुम्बक उपर्युक्त में से कोः	त्र क्षेत्र ठीय क्षेत्र दोनों				-	1

1

P.T.O.


	(ग)		निर्वात में संचरित होने वाली विद्युत-चुम्बकीय तरंग							
		E = E	$E = E_0 \sin(kx - \omega t)$, $B = B_0 \sin(kx - \omega t)$ से प्रदर्शित है, तब होगा :							
		(i)	$E_0 k = B_0 \omega \qquad (i$	i)	$E_0B_0 = \omega k$,				
		(iii)	$E_0\omega = B_0k \qquad (i$	v)	$E_0 B_0 = \sqrt{\omega k}$					
	(ঘ)		1.2 अपवर्तनांक के पदार्थ से एक उभयोत्तल लेंस बना है जिसकी दोनों सतह उत्तल हैं। यदि							
		इसको 1:33 अपवर्तनांक वाले जल में डुबोते हैं तो वह कार्य करेगा :								
		(i)	एक अभिसारी लेंस की तरह			c.				
		(ii)	एक अपसारी लेंस की तरह							
			एक आयताकार गुटके की तरह							
		(iv)	एक प्रिज़्म की तरह							
	(ङ)) समीकरण $E=pC$ में, $E-ऊर्जा तथा p-संवेग है। यह समीकरण लागू होता है:$								
		(i) इलेक्ट्रॉन तथा फ़ोटॉन के लिए ।								
		(ii) इलेक्ट्रॉन के लिए परन्तु फ़ोटॉन के लिए नहीं ।								
		(iii) फ़ोटॉन के लिए परन्तु इलेक्ट्रॉन के लिए नहीं ।								
		(iv)	न तो इलेक्ट्रॉन और न ही फ़ोटॉन	न के	हिल्ए।					
	(च)	p-n संधि में विसरण धारा का मान अपवाह धारा से अधिक होता है, यदि संधि संयोजित है :								
		(i)	अग्रदिशिक बायस में							
		(ii)	पश्चिदशिक बायस में							
		(iii)	बायस नहीं (unbiased)							
		(iv)	किसी में नहीं							
			ख	व्रण्ड	. ब					
2.	(क)	विशिष	ट चालकता (ठ) एवं अपवाह वेग	(v _d) में संबंध के लिए समीकरण लिखिए।	1				
	(ख)	ऐम्पियर परिपथीय नियम का उल्लेख कीजिए ।								
	(ग)	(ग) 1 kWh का मान जूल में निकालिए।								
	(ঘ)	स्ब-प्रेर	!	1						
	(ङ)	eV है। इसके इलेक्ट्रॉन की n = 2 अवस्था में	1							
	()	आयनन ऊर्जा क्या होगी ? एक तरंग के 'तरंगाग्र' की परिभाषा दीजिए ।								
• • •		्या भा	राचा सरमात्र अस भागमाना द्वाज	•		1				
346	(FT)			2						

 (क) दिए गए परिपथ में 10 Ω वाले प्रतिरोधक में प्रवाहित धारा का मान ज्ञात कीजिए जबकि स्विच S खुला हो तथा बंद हो ।

(ख) एकीकृत परमाणु द्रव्यमान मात्रक (amu) की समतुल्य ऊर्जा परिकलित कीजिए ।

(ग) एकसमान चुंबकीय आघूर्ण $(m_1=m_2)$ के दो चुंबक दिए गए चित्र की भाँति रखे हैं । यदि चुंबक A_1 के द्वारा बिन्दु P पर चुंबकीय क्षेत्र की तीव्रता 2×10^{-3} टेस्ला हो, तो दोनों चुंबकों के कारण P पर परिणामी चुंबकीय क्षेत्र की तीव्रता ज्ञात कीजिए ।

(घ) सिलिकॉन p-n संधि डायोड में, 20 V का अग्र विभव लगाने पर उत्पन्न अग्र धारा 10 mA हो,
 तो इसका अग्र प्रतिरोध परिकलित कीजिए ।

खण्ड द

- (क) एकसमान विद्युत क्षेत्र में रखे वैद्युत द्विध्रुव पर लगने वाले बल-आधूर्ण का व्यंजक प्राप्त कीजिए । 3
 - (ख) 12 सेमी त्रिज्या के धारावाही वृत्ताकार कुण्डली के केन्द्र में उत्पन्न चुंबकीय क्षेत्र B की तीव्रता 0.5 × 10⁻⁴ टेस्ला कुण्डली के तल के लम्बवत् ऊपर की ओर है । कुण्डली में प्रवाहित धारा के मान तथा दिशा का परिकलन कीजिए ।
 - (ग) पूर्ण-आंतरिक परावर्तन तथा क्रान्तिक कोण क्या होता है ? प्रकाशिक तन्तु (Optical fibre) किस सिद्धान्त पर कार्य करता है ?

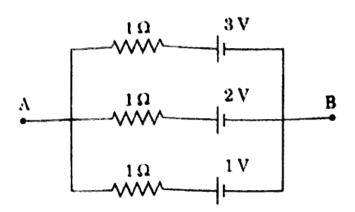
3

346 (FT)

P.T.O.

2

2


2

 2

3

3

(ध) दर्शाए गए परिपथ में. A तथा B के मध्य विभवांतर ज्ञात कीजिए ।

3

.;

3

3

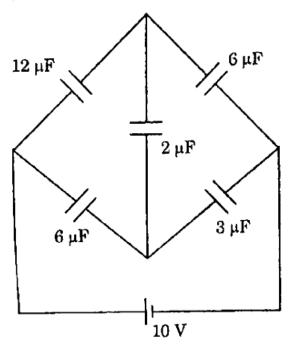
3

3

3

- (ङ) अन्योन्य प्रेरकत्व की परिभाषा दीजिए । सिद्ध कीजिए, $\frac{k}{2} = \frac{1}{2} = \frac{1}{2}$
- 5. (क) आदर्श अमीटर तथा आदर्श वोल्टमीटर का प्रतिरोध कितना होता है ? ऐमीटर तथा वोल्टमीटर को क्रमश: परिपथ के श्रेणीक्रम तथा समान्तर क्रम में क्यों जोड़ा जाता है ?
 - (ख) एक कुण्डली का प्रेरकत्व 0·4 हेनरी एवं प्रतिरोध 10 ओम है । यह 30 हर्ट्ज़, 6·5 वोल्ट के प्रत्यावर्ती स्रोत से जुड़ी है । इस परिपथ में व्यय औसत विद्युत शक्ति की गणना कीजिए ।
 - (ग) मैक्सवेल की विस्थापन धारा की व्याख्या कीजिए तथा इसका समीकरण लिखिए । इसके एवं चालन धारा के बीच कलान्तर कितना होता है ?
 - (घ) प्रकाश का व्यतिकरण क्या होता है ? (i) संपोषी व्यतिकरण तथा (ii) विनाशी व्यतिकरण की दशाएँ दर्शाइए ।

अथवा


प्रकाश के ध्रुवण से क्या तात्पर्य है ? पोलेरॉइड के सिद्धान्त तथा दो उपयोगों का उल्लेख कीजिए।

(ङ) 2.5 eV के कार्य फलन वाले धातु में 4000 Å की तरंगदैर्घ्य का प्रकाश डालने पर उत्सर्जित फोटो-इलेक्ट्रॉन के अधिकतम वेग तथा रेखीय संवेग की गणना कीजिए।

6. स्थिर-वैद्युतिकी में गॉस नियम को लिखकर स्पष्ट कीजिए । इसकी सहायता से एकसमान आविशित पतले गोलीय खोल (आवेश = q तथा त्रिज्या = R) के कारण विद्युत क्षेत्र का मान (i) खोल के बाहर (ii) खोल के भीतर तथा (iii) खोल की सतह पर ज्ञात कीजिए ।

अथवा

दिए गए परिपथ में निम्नलिखित की गणना कीजिए :

- (i) परिपथ की तुल्य धारिता
- (ii) 3 μF तथा 2 μF वाले संधारित्रों पर आवेश
- किरण आरेख की सहायता से परावर्ती दूरदर्शी में प्रतिबिंब बनने की व्याख्या कीजिए । अपवर्ती दृख्शीं से इसकी विशेषताओं की तुलना कीजिए ।

अथवा

तरंगों के विवर्तन तथा व्यतिकरण में अन्तर स्पष्ट कीजिए । एकल झिरी विवर्तन प्रारूप का गुणात्मक अवलोकन कीजिए ।

हाइड्रोजन परमाणु के लिए बोहर मॉडल के अभिग्रहीतों को स्पष्ट कीजिए । हाइड्रोजन परमाणु के ऊर्जा स्तर n = 1 तथा n = 4 के बीच संक्रमण के संगत (i) उत्सर्जन तथा (ii) अवशोषण स्पेक्ट्रम में प्राप्त स्पेक्ट्रमी रेखाओं को दर्शाइए ।

अथवा

नाभिक की बंधन ऊर्जा से क्या अभिप्राय है ? बंधन ऊर्जा प्रति न्यूबिलअनि की द्रव्यमान संख्या के संगत विचरण दर्शाइए । विखण्डन एवं संलयन अभिक्रियाओं की इस विचरण की महायता में विवेचना कीजिए ।

P.T.O.

5

5

5

5

Ü

b

9. n-टाइप अर्धचालक की चालकता की गणना निम्नलिखिन ऑकर्ड के की रूप

चालन इलेक्टॉर्नी का धनत्व

8×1018 cm-3

कोटरों का घनत्व

= 5 × 10¹² cm⁻³

इलेक्ट्रॉनों की गतिशीलता (mobility) = 2.3×10^4 cm²/V-%

कोटरों की गतिशीलता (mobility)

 $= 100 \text{ cm}^2/\text{V}_{-8}$

अथवा

p-n संधि के निर्माण में हासी स्तर तथा विभव रोधक की व्याण्या की त्रिण । अग्रीटीशक बायस तथा परचदिशिक बायस की दशा में दोनों में क्या परिवर्तन होता है ?

11

1,

भौतिक स्थिरांक :

इलेक्ट्रॉन का द्रव्यमान

 $= 9.1 \times 10^{-31} \, \text{kg}$

प्लांक नियतांक (h)

 $= 6.6 \times 10^{-34} J_{-8}$

प्रकाश चाल (c)

 $= 3 \times 10^8 \text{ ms}^{-1}$

रिडबर्ग नियतांक (R)

 $= 1.097 \times 10^7 \,\mathrm{m}^{-1}$

सिलिकॉन के लिए विभव राधक

= 0.7 बोल्ट

 $\frac{\mu_0}{4\pi}$

 $= 10^{-7} \text{ N/A}^2$

(English Version)

Instructions:

- (i) First 15 minutes are allotted for the candidates to read the question paper.
- (ii) All the questions are compulsory.
- (iii) This question paper consists of five Sections Section A, Section B, Section C, Section D and Section E.
- (iv) Section A is of multiple choice type and each question carries 1 mark.
- (v) Section B is of very short-answer type and each question carries 1 mark.
- (vi) Section C is of short-answer type-I and each question carries 2 marks
- (vii) Section D is of short-answer type-II and each question carries 3 marks.
- (viii) Section E is of long-answer type. Each question carries 5 marks. All four questions of this section have been given internal choice. You have to do only one question from the choice given in the question.
- (ix) The symbols used in the question paper have usual meaning

Section A

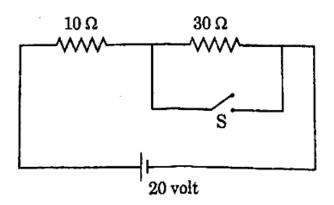
1.	(a)	Electric charges are uniformly distributed in a small volume. The flux of electric field through a spherical surface of radius 2 cm surrounding the total charge is $10 \text{ V} \times \text{m}$. The flux over a sphere of radius 4 cm will be:							
		(i)	10 V × m	(ii)	20 V × m				
		(iii)	40 V × m	(iv)	80 V × m				
	(b)	A moving charge produces:							
		(i)	electric field only						
		(ii)	magnetic field only						
		(iii) both electric and magnetic fields							
		(iv)	none of the above						
	(c)	An electromagnetic wave propagating through vacuum, described by $E = E_0 \sin(kx - \omega t)$, $B = B_0 \sin(kx - \omega t)$ then:							
		(i)	$E_0 k = B_0 \omega$	(ii)	$\mathbf{E}_0 \mathbf{B}_0 = \omega \mathbf{k}$				
		(iii)	$E_0\omega = B_0k$	(iv)	$\mathbf{E_0}\mathbf{B_0} = \sqrt{\omega \mathbf{k}}$				
	(d)	the s			having refractive index 1.2. Both s dipped into water of refractive	1			
	(e)		equation E = pC, (when ctively) is valid: for an electron as well as		p are energy and momentum	i			
			for an electron but not fo						
		(ii)	tot an efection par nor to	t a himmir					

(iii)

(iv)

for a photon but not for an electron.

neither for an electron nor for a photon.


- (f) Diffusion current in a p-n junction is greater than the drift current in magnitude:
 - (i) if the junction is forward biased
 - (ii) if the junction is reverse biased
 - (iii) if the junction is unbiased
 - (iv) in none of them

Section B

- 2. (a) Write the equation for relating relationship between specific conductivity (σ) and drift velocity (v_d).
 - (b) State Ampere's Circuital Law.
 - (c) Find the value of 1 kWh in Joule.
 - (d) Deduce dimensional equation of self-inductance.
 - (e) Ionising energy of Hydrogen atom is 13.6 eV. In a state where n = 2, what will be ionisation energy of its electron?
 - (f) Define 'wavefront' of a wave.

Section C

3. (a) Find the current through the 10 Ω resistor when the switch S is open and closed in the given circuit. https://www.upboardonline.com

(b) Calculate energy equivalence of unified atomic mass unit.

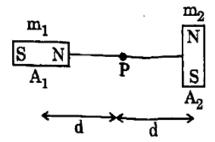
2

1

1

1

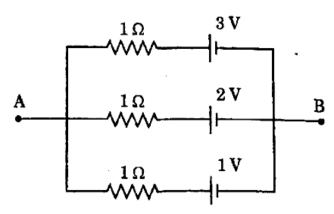
1


1

1

1

 2


(c) Two magnets of equal magnetic moment $(m_1 = m_2)$ are placed as shown in the figure. If magnetic field intensity at P due to magnet A_1 is 2×10^{-3} Tesla, then find out total magnetic field intensity at P due to both the magnets.

(d) In a Silicon p-n junction diode, for 20 V forward voltage the forward current produced is 10 mA. Calculate its forward resistance.

Section D

- 4. (a) Deduce the formula of torque on an electric dipole placed in a uniform electric field. https://www.upboardonline.com
 - (b) The intensity of the magnetic field B due to a current-carrying circular coil of radius 12 cm at its centre is 0.5×10^{-4} Tesla perpendicular to the plane of the coil upward. Calculate the magnitude and direction of current flowing in the coil.
 - (c) What is total internal reflection and critical angle? What is the working principle of Optical Fibre.
 - (d) In the given circuit, find the potential difference between A and B.

(e) Define Mutual Inductance. Show that $\frac{\text{Henry}}{\text{Meter}} = \frac{\text{Newton}}{\text{Ampere}^2}$

3

2

 2

3

3

3

3

- 5. (a) What is the value of resistance of ideal ammeter and ideal voltmeter? Why are an ammeter and a voltmeter respectively connected in series and parallel of the circuit?
 - (b) A coil has a resistance of 10Ω and inductance of 0.4 Henry. It is connected to an AC source of 6.5 V, 30 Hz. Find the average power consumed in the circuit.

3

3

3

3

3

3

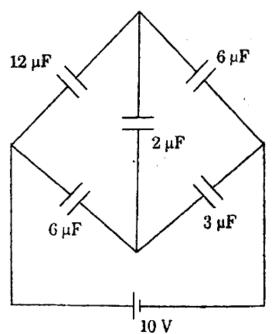
5

5

- (c) Explain Maxwell's displacement current and write its equation. What is the phase difference between it and the conduction current?
- (d) What is interference of light? Mention the condition for (i) constructive and (ii) destructive interference.

OR

What is polarization of light? State the principle and two uses of a polaroid.


(e) Find the maximum magnitude of velocity and linear momentum of a photoelectron emitted when light of wavelength 4000 Å falls on a metal having work function 2.5 eV.

Section E

6. State and explain Gauss's law in electrostatics. Using it, find the electric field due to a uniformly charged thin spherical shell (charge = q and radius = R) at (i) external point of shell (ii) internal point of shell and (iii) on the surface of shell.

OR

Calculate the following in the given circuit:

- (i) The equivalent capacitance of the circuit
- (ii) The charge on 3 μF and 2 μF capacitors

7. Explain image formation in a reflecting telescope with the help of a ray diagram. Compare its qualities with a refracting telescope.

5

OR

Explain the differences between diffraction and interference of waves. Observe qualitatively the diffraction pattern of a single slit.

5

8. Explain postulates of Bohr's model for Hydrogen atom. Show the number of lines in the (i) emission and (ii) absorption spectra of Hydrogen atom corresponding to transition between energy states n = 1 and n = 4.

5

OR

What is meant by binding energy of a nucleus? Draw variation of binding energy per nucleon against the mass number. Discuss fission and fusion with the help of this variation.

5

9. Calculate the conductivity of an n-type semiconductor from the following data:

5

Density of conduction electrons = $8 \times 10^{13} \text{ cm}^{-3}$

Density of holes = $5 \times 10^{12} \text{ cm}^{-3}$

Mobility of electrons = 2.3×10^4 cm²/V-s

Mobility of holes = $100 \text{ cm}^2/\text{V-s}$

OR

Explain the depletion layer and potential barrier in the formation of p-n junction.

How are both changing in the condition of forward biasing and reverse biasing?

5

Physical constants:

Mass of electron =
$$9.1 \times 10^{-31}$$
 kg

Planck's constant (h) =
$$6.6 \times 10^{-34}$$
 J-s

Speed of light (c) =
$$3 \times 10^8$$
 m/s

Rydberg constant (R) =
$$1.097 \times 10^7 \,\mathrm{m}^{-1}$$

$$\frac{\mu_0}{4\pi}$$
 = 10⁻⁷ N/A²

https://www.upboardonline.com Whatsapp @ 9300930012 Send your old paper & get 10/-अपने पुराने पेपर्स भेजे और 10 रुपये पायें, Paytm or Google Pay सं

346 (FT)

11